Enhanced thermionic currents by non equilibrium electron populations of metals

  • J. L. Domenech-Garret
  • S. P. Tierno
  • L. Conde
Regular Article


An analytical expression is derived for the electron thermionic current from heated metals by using a non equilibrium, modified Kappa energy distribution for electrons. This isotropic distribution characterizes the long high energy tails in the electron energy spectrum for low values of the index κ and also accounts for the Fermi energy for the metal electrons. The limit for large κ recovers the classical equilibrium Fermi-Dirac distribution. The predicted electron thermionic current for low κ increases between four and five orders of magnitude with respect to the predictions of the equilibrium Richardson-Dushmann current. The observed departures from this classical expression, also recovered for large κ, would correspond to moderate values of this index. The strong increments predicted by the thermionic emission currents suggest that, under appropriate conditions, materials with non equilibrium electron populations would become more efficient electron emitters at low temperatures.


Statistical and Nonlinear Physics 


  1. 1.
    J.K. Wysocki, Phys. Rev. B 28, 834 (1983) ADSCrossRefGoogle Scholar
  2. 2.
    D.M. Riffe, X.Y. Wang, M.C. Downer, D.L. Fisher, T. Tajima, J.L. Erskine, R.M. More, J. Opt. Soc. Am. B 10, 1424 (1993) ADSCrossRefGoogle Scholar
  3. 3.
    Yu.B. Paderno, A.A. Taran, D.A. Voronovich, V.N. Paderno, V.B. Filipov, Functional Materials 15, 63 (2008) Google Scholar
  4. 4.
    M. Tanaka, M. Ushio, M. Ikeuchi, Y. Kagebayashi, J. Phys. D 38, 29 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    J. Sillero, D. Ortega, E. Muñoz-Serrano, E. Casado, J. Phys. D 43, 1 (2010) CrossRefGoogle Scholar
  6. 6.
    B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65, 214303 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    S.G. Bezhanov, A.P. Kanavin, S.A. Uryupin, Quantum Electron. 42, 447 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell, Phys. Rev. B 69, 054102 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    O.R. Battaglia, C. Fazio, I. Guastella, R.M. Sperandeo-Mineo, Am. J. Phys. 78, 1302 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    G. Ferrini, F. Banfi, C. Giannetti, F. Parmigian, Nucl. Inst. Meth. Phys. Res. A 601, 123 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    W. Wendelen, B.Y. Mueller, D. Autrique, B. Rethfeld, A. Bogaerts, J. Appl. Phys. 111, 113110 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    A. Hasegawa, K. Mima, M. Duong-van, Phys. Rev. Lett. 54, 2608 (1985) ADSCrossRefGoogle Scholar
  13. 13.
    B. Shizgal, Astrophys. Space Sci. 312, 227 (2007) ADSCrossRefMATHGoogle Scholar
  14. 14.
    J.J. Podesta, NASA Reports, CR-2004-212770 (2004) Google Scholar
  15. 15.
    G. Livadiotis, D.J. McComas, Astrophys. J. 741, 88 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    B.G. Lindsay, Introduction to Physical Statistics (John Wiley & Sons, New York, 1962), Chap. 5, pp. 7–11 Google Scholar
  17. 17.
    R.A. Treumann, Europhys. Lett. 48, 8 (1999) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    R.H. Fowler, Statistical Mechanics (Cambridge University Press, Cambridge, 1965), Chap. 11 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de Física EUITA-E Ingeniería Aeronáutica y del Espacio, Univ. Politécnica de MadridMadridSpain
  2. 2.Departamento de Física Aplicada E.T.S.I. Aeronáuticos-E Ingeniería Aeronáutica y del EspacioMadridSpain

Personalised recommendations