Advertisement

The linear noise approximation for reaction-diffusion systems on networks

  • Malbor Asllani
  • Tommaso Biancalani
  • Duccio Fanelli
  • Alan J. McKane
Regular Article

Abstract

Stochastic reaction-diffusion models can be analytically studied on complex networks using the linear noise approximation. This is illustrated through the use of a specific stochastic model, which displays travelling waves in its deterministic limit. The role of stochastic fluctuations is investigated and shown to drive the emergence of stochastic waves beyond the region of the instability predicted from the deterministic theory. Simulations are performed to test the theoretical results and are analyzed via a generalized Fourier transform algorithm. This transform is defined using the eigenvectors of the discrete Laplacian defined on the network. A peak in the numerical power spectrum of the fluctuations is observed in quantitative agreement with the theoretical predictions.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    M. Mimura, J.D. Murray, J. Theor. Biol. 75, 249 (1978) CrossRefMathSciNetGoogle Scholar
  2. 2.
    J.L. Maron, S. Harrison, Science 278, 1619 (1997) CrossRefADSGoogle Scholar
  3. 3.
    M. Baurmann, T. Gross, U. Feudel, J. Theor. Biol. 245, 220 (2007) CrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Rietkerk, J. van de Koppel, Trends Ecol. Evol. 23, 169 (2008) CrossRefGoogle Scholar
  5. 5.
    H. Meinhardt, A. Gierer, BioEssays 22, 753 (2000) CrossRefGoogle Scholar
  6. 6.
    M.P. Harris, S. Williamson, J.F. Fallon, H. Meinhardt, R.O. Prum, Proc. Natl. Acad. Sci. USA 102, 11734 (2005) CrossRefADSGoogle Scholar
  7. 7.
    P.K. Maini, R.E. Baker, C.-M. Chuong, Science 314, 1397 (2006) CrossRefGoogle Scholar
  8. 8.
    S.A. Newman, R. Bhat, Birth Defects Res. C 81, 305 (2007) CrossRefGoogle Scholar
  9. 9.
    T. Miura, K. Shiota, Dev. Dyn. 217, 241 (2000) CrossRefGoogle Scholar
  10. 10.
    I. Prigogine, R. Lefever, J. Chem. Phys. 48, 1695 (1968) CrossRefADSGoogle Scholar
  11. 11.
    V. Castets, E. Dulos, J. Boissonade, P. De Kepper, Phys. Rev. Lett. 64, 2953 (1990) CrossRefADSGoogle Scholar
  12. 12.
    Q. Ouyang, H.L. Swinney, Nature 352, 610 (1991) CrossRefADSGoogle Scholar
  13. 13.
    A.M. Turing, Phil. Trans. R. Soc. Lond. B 237, 37 (1952) CrossRefADSGoogle Scholar
  14. 14.
    H. Nakao, A.S. Mikhailov, Nat. Phys. 6, 544 (2010) CrossRefGoogle Scholar
  15. 15.
    R. Pastor-Satorras, A. Vespignani, Nat. Phys. 6, 480 (2010) CrossRefGoogle Scholar
  16. 16.
    V. Colizza, A. Barrat, M. Barthelemy, A. Vespignani, Proc. Natl. Acad. Sci. USA 103, 2015 (2006) CrossRefADSGoogle Scholar
  17. 17.
    R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001) CrossRefADSGoogle Scholar
  18. 18.
    V. Colizza, R. Pastor-Satorras, A. Vespignani, Nat. Phys. 3, 276 (2007) CrossRefGoogle Scholar
  19. 19.
    M. Asslani, F. Di Patti, D. Fanelli, Phys. Rev. E 86, 046105 (2102) CrossRefGoogle Scholar
  20. 20.
    A.J. McKane, T.J. Newman, Phys. Rev. Lett. 94, 218102 (2005) CrossRefADSGoogle Scholar
  21. 21.
    T. Dauxois, F. Di Patti, D. Fanelli, A.J. McKane, Phys. Rev. E 79, 036112 (2009) CrossRefADSGoogle Scholar
  22. 22.
    T. Butler, N. Goldenfeld, Phys. Rev. E 80, 030902(R) (2009) CrossRefADSGoogle Scholar
  23. 23.
    T. Biancalani, D. Fanelli, F. Di Patti, Phys. Rev. E 81, 046215 (2010) CrossRefADSGoogle Scholar
  24. 24.
    T.E. Woolley, R.E. Baker, E.A. Gaffney, P.K. Maini, Phys. Rev. E 84, 046216 (2011) CrossRefADSGoogle Scholar
  25. 25.
    T. Biancalani, T. Galla, A.J. McKane, Phys. Rev. E 84, 026201 (2011) CrossRefADSGoogle Scholar
  26. 26.
    I. Hanski, Metapopulation Ecology (Oxford University Press, Oxford, 1999) Google Scholar
  27. 27.
    T. Maruyama, Stochastic Problems in Population Genetics, Lectures in Biomathematics 17 (Springer, Berlin, 1977) Google Scholar
  28. 28.
    G. Rozhnova, A. Nunes, A.J. McKane, Phys. Rev. E 84, 051919 (2011) CrossRefADSGoogle Scholar
  29. 29.
    J.D. Challenger, A.J. McKane, Phys. Rev. E 88, 012107 (2013) CrossRefADSGoogle Scholar
  30. 30.
    A.M. Zhabotinsky, M. Dolnik, I.R. Epstein, J. Chem. Phys. 103, 10306 (1995) CrossRefADSGoogle Scholar
  31. 31.
    A-L. Barabási, R. Albert, Science 286, 509 (1999) CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    D.T. Gillespie, J. Comp. Phys. 22, 403 (1976) CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    N.E. Kouvaris, H. Kori, A.S. Mikhailov, PLoS ONE 7, e45029 (2012) CrossRefADSGoogle Scholar
  34. 34.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland Pubs., Amsterdam, 1992) Google Scholar
  35. 35.
    R. Burioni, S. Chibbaro, D. Vergni, A. Vulpiani, Phys. Rev. E 86, 055101(R) (2012) CrossRefADSGoogle Scholar
  36. 36.
    I. Simonsen, K.A. Eriksen, S. Maslov, K. Sneppen, Physica A 336, 163 (2004) CrossRefADSGoogle Scholar
  37. 37.
    M. Cross, H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge University Press, Cambridge, 2009) Google Scholar
  38. 38.
    P.N. McGraw, M. Menzinger, Phys. Rev. E 77, 031102 (2008) CrossRefADSGoogle Scholar
  39. 39.
    C.A. Lugo, A.J. McKane, Phys. Rev. E 78, 051911 (2008) CrossRefMathSciNetADSGoogle Scholar
  40. 40.
    P. de Anna, F. Di Patti, D. Fanelli, A.J. McKane, T. Dauxois, Phys. Rev. E 81, 056110 (2010) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Malbor Asllani
    • 1
  • Tommaso Biancalani
    • 2
  • Duccio Fanelli
    • 3
  • Alan J. McKane
    • 2
  1. 1.Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’InsubriaComoItaly
  2. 2.Theoretical Physics, School of Physics and Astronomy, University of ManchesterPL ManchesterUK
  3. 3.Dipartimento di Fisica e Astronomia, Università di Firenze and INFNFlorenceItaly

Personalised recommendations