Advertisement

On the transition to hyperchaos and the structure of hyperchaotic attractors

Regular Article

Abstract

Using a recently proposed algorithmic scheme for correlation dimension analysis of hyperchaotic attractors, we study two well-known hyperchaotic flows and two standard time delayed hyperchaotic systems in detail numerically. We show that at the transition to hyperchaos, the nature of the scaling region changes suddenly and the attractor displays two scaling regions for embedding dimension M ≥ 4. We argue that it is an indication of a strong clustering tendency of the underlying attractor in the hyperchaotic phase. Because of this sudden qualitative change in the scaling region, the transition to hyperchaos can be easily identified using the discontinuous changes in the dimension (D 2) at the transition point. We show this explicitely for the two time delayed systems. Further support for our results is provided by computing the spectrum of Lyapunov Exponents (LE) of the hyperchaotic attractor in all cases. Our numerical results imply that the structure of a hyperchaotic attractor is topologically different from that of a chaotic attractor with inherent dual scales, at least for the two general classes of hyperchaotic systems we have analysed here.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    O.E. Rossler, Phys. Lett. A 71, 155 (1979) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    M.A. Harrison, Y.C. Lai, Int. J. Bifurc. Chaos 10, 1471 (2000) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    S. Yanchuk, T. Kapitaniak, Phys. Rev. E 64, 056235 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    E.G. Souza, R.L. Viana, S.R. Lopes, Phys. Rev. E 78, 066206 (2008) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Q. Zhou, Z. Chen, Z. Yuan, Chaos, Solitons and Fractals 40, 1012 (2009) ADSCrossRefMATHGoogle Scholar
  6. 6.
    R. Vicente, J. Dauden, P. Colet, R. Toral, IEEE J. Quantum Electron. 41, 541 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    G. Vidal, H. Mancini, Int. J. Bifurc. Chaos 20, 885 (2010) MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    J.C. Xavier, P.C. Rech, J. Computational Interdisciplinary Sci. 1, 225 (2010) Google Scholar
  9. 9.
    E.J. Ngamga, A. Buscarino, M. Frasca, G. Sciuto, J. Kurths, L. Fortuna, Chaos 20, 043115 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    V. Balachandran, G. Kandiban, Ind. J. Pure Appl. Phys. 47, 823 (2009) Google Scholar
  11. 11.
    Z. Chen, Y. Yang, G. Qi, Z. Yuan, Phys. Lett. A 360, 696 (2007) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    G. Qi, M.A. van Wyk, B.J. van Wyk, G. Chen, Phys. Lett. A 372, 124 (2008) MathSciNetADSCrossRefMATHGoogle Scholar
  13. 13.
    J.P. Goedgebuer, L. Larger, H. Port, Phys. Rev. Lett. 80, 2249 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    V.S. Udaltsov, J.P. Goedgebuer, L. Larger, J.B. Cuenot, P. Levy, W.T. Rhodes, Opt. Spectrosc. 95, 114 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    G. Baier, S. Sahle, J. Chem. Phys. 100, 8907 (1994) ADSCrossRefGoogle Scholar
  16. 16.
    L.G. Machado, M.A. Savi, P. Manuel, C.L. Pacheko, Int. J. Solids Struct. 40, 5139 (2003) CrossRefMATHGoogle Scholar
  17. 17.
    S. Torkamani, E.A. Butcher, M.D. Todd, G. Park, Smart Materials Struct. 20, 025006 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    T. Kapitaniak, Phys. Rev. E 47, R2975 (1993) ADSCrossRefGoogle Scholar
  19. 19.
    T. Kapitaniak, K.E. Thylwe, I. Cohen, J. Wojewodu, Chaos, Solitons and Fractals 5, 2003 (1995) MathSciNetADSCrossRefMATHGoogle Scholar
  20. 20.
    T. Kapitaniak, Y. Maistrenko, S. Popovych, Phys. Rev. E 62, 1972 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    K.P. Harikrishnan, R. Misra, G. Ambika, Commun. Nonlinear Sci. Numer. Simulat. 17, 263 (2012) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    K.P. Harikrishnan, R. Misra, G. Ambika, A.K. Kembhavi, Physica D 215, 137 (2006) MathSciNetADSCrossRefMATHGoogle Scholar
  23. 23.
    K.P. Harikrishnan, G. Ambika, R. Misra, Mod. Phys. Lett. B 21, 129 (2007) ADSCrossRefMATHGoogle Scholar
  24. 24.
    J. Quang, Phys. Lett. A 366, 217 (2007) CrossRefGoogle Scholar
  25. 25.
    M. Lakshmanan, D.V. Senthilkumar, Dynamicas of Nonlinear Time Delay Systems (Springer, Berlin, 2010) Google Scholar
  26. 26.
    M.C. Mackey, L. Glass, Science 197, 287 (1977) ADSCrossRefGoogle Scholar
  27. 27.
    K. Ikeda, K. Matsumoto, Physica D 29, 223 (1987) ADSCrossRefMATHGoogle Scholar
  28. 28.
    H.S. Greenside, A. Wolf, J. Swift, T. Pignataro, Phys. Rev. A 25, 3453 (1982) MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    P. Grassberger, I. Procaccia, Physica D 9, 189 (1983) MathSciNetADSCrossRefMATHGoogle Scholar
  30. 30.
    P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346 (1983) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    F.H. Ling, G. Schmidt, J. Comput. Phys. 99, 196 (1992) ADSCrossRefMATHGoogle Scholar
  32. 32.
    T.C.A. Molteno, Phys. Rev. E 48, R3263 (1993) ADSCrossRefGoogle Scholar
  33. 33.
    J. von Hardenberg, R. Thieberger, A. Provenzale, Phys. Lett. A 269, 303 (2000) MathSciNetADSCrossRefMATHGoogle Scholar
  34. 34.
    R. Hegger, H. Kantz, T. Schreiber, Chaos 9, 413 (1999) ADSCrossRefMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsCochinIndia
  2. 2.Inter University Centre for Astronomy and AstrophysicsPuneIndia
  3. 3.Indian Institute of Science Education and ResearchPuneIndia

Personalised recommendations