On the affordances of the MaxEP principle

Regular Article

Abstract

Optimality principles have long been popular in the natural sciences and enjoyed much successes in various applications. However these principles seem to be disparate, each applied in limited contexts and there are far too many of them causing some consternation among scientists and philosophers of science regarding the ad-hoc nature of the optimality arguments. In this paper, we discuss the Maximum entropy production (MaxEP) as a plausible over-arching principle to understand stable configurations in fluid mechanics and related problems. The MaxEP being based upon sound physical arguments and in the immutable laws of thermodynamics along with the fact that it has been successfully co-opted across disciplines makes it worthy of attention. We discuss various physical and metaphysical aspects of this principle and use it to analyze some model problems regarding patterns in particle sedimentation such as sedimentation of a particle in Newtonian and non-Newtonian fluids and stable deformation of a falling droplet.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R.K. Niven, J. Non-Equilibrium Thermodynamics 35, 3 (2010).CrossRefGoogle Scholar
  2. 2.
    H. Ziegler, An Introduction to Thermodynamics (North-Holland, Amsterdam, 1983).Google Scholar
  3. 3.
    L.M. Martyushev, V.D. Seleznev, Chem. Biol. Phys. Rep. 426, 1 (2006).ADSMathSciNetGoogle Scholar
  4. 4.
    L. Onsager, Phys. Rev. 37, 405 (1931).ADSCrossRefGoogle Scholar
  5. 5.
    L. Onsager, Phys. Rev. 38, 2265 (1931).ADSCrossRefMATHGoogle Scholar
  6. 6.
    I. Prigogine, Introduction to Thermodynamics of Irreversible Processes (Interscience Publishers, New York, 1955).Google Scholar
  7. 7.
    S. Bordel, Physica A 389, 21 (2010).CrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Vaidya, in MaxEP and stable configurations in fluid solid interactions, Beyond the Second Law: Entropy Production and Non-Equilibrium Systems (Book Series: Understanding Complex Systems), edited by R.C. Dewar, C. Lineweaver, R. Niven, K. Regenauer-Lieb (Springer Verlag, 2013).Google Scholar
  9. 9.
    A. Bejan, Shape and Structure, from Engineering to Nature (Cambridge University Press, Cambridge, 2000).Google Scholar
  10. 10.
    A. Bejan, S. Lorente, Philos. Trans. Roy. Soc. B 365, 1545 (2010).CrossRefGoogle Scholar
  11. 11.
    A. Bejan, S. Lorente, J. Appl. Phys. 113, 151301 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    A. Bejan, S. Lorente, J. Appl. Phys. 100, 041301 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    K.R. Rajagopal, A.R. Srinivasa, Int. J. Plast. 14, 10 (1998).Google Scholar
  14. 14.
    K.R. Rajagopal, A.R. Srinivasa, ZAMP 50, 459 (1999).ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    K.R. Rajagopal, A.R. Srinivasa, J. Non-Newtonian Fluid Mech. 88, 207 (2000).CrossRefMATHGoogle Scholar
  16. 16.
    E.D. Schneider, J.J. Kay, Math. Comput. Mod. 19, 6 (1994).CrossRefGoogle Scholar
  17. 17.
    G.P. Beretta, Phys. Rev. E 73, 026113 (2006).ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    G.P. Beretta, J. Math. Phys. 25, 1507 (1984).ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    R. Swenson, Int. J. General Systems 21, 2 (1992).Google Scholar
  20. 20.
    R. Dewar, J. Phys. A 36, 3 (2003).CrossRefMathSciNetGoogle Scholar
  21. 21.
    R. Dewar, Entropy 11, 4 (2009).CrossRefMathSciNetGoogle Scholar
  22. 22.
    A. Kleidon, Philos. Trans. Roy. Soc. A 370, 1012 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    A. Kleidon, R.D. Lorenz, Non-Equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond (Springer, Berlin, 2005).Google Scholar
  24. 24.
    R.K. Niven, Phys. Rev. E 80, 2 (2009).CrossRefGoogle Scholar
  25. 25.
    H. Ozawa, A. Ohmaru, R.D. Lorenz, T. Pujol, Rev. Geophys. 41, 4 (2003).CrossRefGoogle Scholar
  26. 26.
    B.J. Chung, A. Vaidya, Physica D 237, 22 (2008).CrossRefMathSciNetGoogle Scholar
  27. 27.
    B.J. Chung, Vaidya, Appl. Math. Comput. 218, 7 (2011).Google Scholar
  28. 28.
    J. Gibson, The Ecological Approach to Visual Perception, New Ed edition (Psychology Press, 1986).Google Scholar
  29. 29.
    Routledge Encyclopedia of Philosophy, Version 1.0, (Routledge, London and New York, 1998).Google Scholar
  30. 30.
    P.J.H. Schoemaker, Behav. Brain Sci. 14, 2 (1991).Google Scholar
  31. 31.
    R.P. Feynman, The Feynman Lectures on Physics, 2nd edn. (Addison Wesley, 2005), Vol. 1.Google Scholar
  32. 32.
    E. Nagel, The Structure of Science (Harcourt, Brace & World, New York, 1961).Google Scholar
  33. 33.
    R. Macklin, British J. Philos. Sci. 19, 345 (1969).CrossRefGoogle Scholar
  34. 34.
    B. Russell, On the notion of cause, in Mysticism and Logic and other essay (Bibliolife, 2009).Google Scholar
  35. 35.
    E.T. Jaynes, Ann. Rev. Phys. Chem. 31, 579 (1980).ADSCrossRefGoogle Scholar
  36. 36.
    G.W. Paltridge, Quart. J. Roy. Meteor. Soc. 104, 927 (1975).ADSCrossRefGoogle Scholar
  37. 37.
    S. Bruers, J. Phys. A 40, 27 (2007).CrossRefMathSciNetGoogle Scholar
  38. 38.
    S. Ede, Art and Science (I.B. Tauris, 2005).Google Scholar
  39. 39.
    P. Hoffman, The Man Who Loved Only Numbers, 1st edn. (Hyperion, New York, 1998).Google Scholar
  40. 40.
    S. Chandrasekhar, Bulletin Am. Acad. Arts Sci. 43, 3 (1989).Google Scholar
  41. 41.
    L.S. Feuer, Philos. Sci. 24, 2 (1957).CrossRefGoogle Scholar
  42. 42.
    A. Rosenblueth, N. Wiener, J. Bigelow, Philos. Sci. 10, 1 (1943).Google Scholar
  43. 43.
    B.E. Hobbs, A. Ord, K. Regenbauer-Lieb, J. Struct. Geol. 33, 220 (2011).CrossRefGoogle Scholar
  44. 44.
    H.J. Kreuzer, Nonequilibrium Thermodynamics and its Statistical Foundations (Clarendon Press, Oxford, 1981).Google Scholar
  45. 45.
    E. Lorenz, Generation of available potential energy and the intensity of the general circulation. Scientific Report No. 1, UCLA, Dept. of Meteorology, 1955.Google Scholar
  46. 46.
    B. Russell, ABC of Relativity (Routledge, New York, 1958).Google Scholar
  47. 47.
    A. Kleidon, Naturwissenschaften 96, 6 (2009).CrossRefGoogle Scholar
  48. 48.
    G. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 1967).Google Scholar
  49. 49.
    R. Ghesselini, J. Non-Newtonian Fluid Mech. 46, 2 (1993).Google Scholar
  50. 50.
    G. Kirchoff, J. Reine Ang. Math. Soc. 71, 237 (1869).Google Scholar
  51. 51.
    K. Chiba, K. Song, A. Horikawa, Rheol. Acta 25, 280 (1986).CrossRefGoogle Scholar
  52. 52.
    K. Cho, Y.I. Cho, N.A. Park, J. Non-Newtonian Fluid Mech. 45, 1 (1992).MathSciNetGoogle Scholar
  53. 53.
    G.P. Galdi, A. Vaidya, J. Math. Fluid Mech. 3, 2 (2001).CrossRefMathSciNetGoogle Scholar
  54. 54.
    G.P. Galdi, On the Motion of a Rigid Body in a Viscous Fluid: A Mathematical Analysis with Applications, Handbook of Mathematical Fluid Mechanics (Elsevier Science, Amsterdam, 2002).Google Scholar
  55. 55.
    H.H. Howard, D.D. Joseph, A.F. Fortes, Int. Video J. Eng. Res. 2, 17 (1992).Google Scholar
  56. 56.
    D.D. Joseph, Y.J. Liu, J. Rheol. 37, 6 (1993).CrossRefMathSciNetGoogle Scholar
  57. 57.
    A. Vaidya, Appl. Math. Lett. 18, 12 (2005).CrossRefMathSciNetGoogle Scholar
  58. 58.
    A. Vaidya, Jpn J. Indus. Appl. Math. 21, 3 (2004).CrossRefMathSciNetGoogle Scholar
  59. 59.
    D.D. Joseph, J. Feng, J. Non-Newtonian Fluid Mech. 64, 2 (1996).CrossRefGoogle Scholar
  60. 60.
    G.P. Galdi, M. Pokorny, A. Vaidya, D.D. Joseph, J. Feng, Math. Mod. Methods Appl. Sci. 12, 11 (2002).CrossRefMathSciNetGoogle Scholar
  61. 61.
    L. Chen, S.V. Garimella, J.A. Reizes, E. Leonardi, J. Fluid Mech. 387, 61 (1999).ADSCrossRefMATHMathSciNetGoogle Scholar
  62. 62.
    D. Bhaga, M.E. Weber, J. Fluid Mech. 105, 61 (1981).ADSCrossRefGoogle Scholar
  63. 63.
    C. I. Christov, P.K. Volkov, J. Fluid Mech. 158, 341 (1985).ADSCrossRefMATHMathSciNetGoogle Scholar
  64. 64.
    R.A. Hartunian, W.R. Sears, J. Fluid Mech. 3, 27 (1957).ADSCrossRefMATHGoogle Scholar
  65. 65.
    D.W. Moore, J. Fluid Mech. 6, 113 (1959).ADSCrossRefMATHGoogle Scholar
  66. 66.
    G. Ryskin, L.G. Leal, J. Fluid Mech. 148, 1 (1984).ADSCrossRefMATHGoogle Scholar
  67. 67.
    T.D. Taylor, A. Acrivos, J. Fluid Mech. 18, 466 (1964).ADSCrossRefMATHMathSciNetGoogle Scholar
  68. 68.
    J.K. Walters, J.F. Davidson, J. Fluid Mech. 12, 408 (1962).ADSCrossRefGoogle Scholar
  69. 69.
    P.P. Wegener, J.Y. Parlange, Ann. Rev. Fluid Mech. 5, 79 (1973).ADSCrossRefGoogle Scholar
  70. 70.
    S.F. Hoerner, Fluid-Dynamic Drag. Hoerner Fluid Dynamics (Brick Town, N.J., USA, 1965).Google Scholar
  71. 71.
    D.F. Young, B.R. Munson, T.H. Okiishi, W.W. Huebsch, A Brief Introduction To Fluid Mechanics, 5th edn. (Wiley, 2010).Google Scholar
  72. 72.
    C. Horne, C.A. Smith, K. Karamcheti, NASA Technical Paper 3118 (1991).Google Scholar
  73. 73.
    L. Bertalanffy, General Systems Theory (George Braziller, Inc., New York, 1968).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Physics, Astronomy, and Computational Sciences, Center for Computational Fluid Dynamics, George Mason UniversityFairfaxUSA
  2. 2.Department of Philosophy and ReligionMontclair State UniversityMontclairUSA
  3. 3.Department of Mathematical SciencesMontclair State UniversityMontclairUSA

Personalised recommendations