Efficiency of transportation on weighted extended Koch networks

Regular Article

Abstract

In this paper, we propose a family of weighted extended Koch networks based on a class of extended Koch networks. They originate from a r-complete graph, and each node in each r-complete graph of current generation produces mr-complete graphs whose weighted edges are scaled by factor h in subsequent evolutionary step. We study the structural properties of these networks and random walks on them. In more detail, we calculate exactly the average weighted shortest path length (AWSP), average receiving time (ART) and average sending time (AST). Besides, the technique of resistor network is employed to uncover the relationship between ART and AST on networks with unit weight. In the infinite network order limit, the average weighted shortest path lengths stay bounded with growing network order (0 < h < 1). The closed form expression of ART shows that it exhibits a sub-linear dependence (0 < h < 1) or linear dependence (h = 1) on network order. On the contrary, the AST behaves super-linearly with the network order. Collectively, all the obtained results show that the efficiency of message transportation on weighted extended Koch networks has close relation to the network parameters h, m and r. All these findings could shed light on the structure and random walks of general weighted networks.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002) ADSCrossRefMATHGoogle Scholar
  2. 2.
    S.N. Dorogovtsev, J.F.F Mendes, Adv. Phys. 51, 1079 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003) MathSciNetADSCrossRefMATHGoogle Scholar
  4. 4.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    L.F. Costa, F.A. Rodrigues, G. Travieso, P.R.V. Boas, Adv. Phys. 56, 167 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    Z.Z. Zhang, S.G. Zhou, Physica A 380, 621 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    W.S. Lovejoy, C.H. Loch, Soc. Netw. 25, 333 (2003) CrossRefGoogle Scholar
  10. 10.
    A. Fronczak, P. Fronczak, J.A. Hołyst, Phys. Rev. E 70, 056110 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    Z.Z. Zhang, L.C. Chen, S.G. Zhou, L.J. Fang, J.H. Guan, T. Zou, Phys. Rev. E 77, 017102 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    F. Comellas, J. Ozón, J.G. Peters, Inf. Process. Lett. 76, 83 (2000) CrossRefGoogle Scholar
  13. 13.
    A.-L. Barabási, E. Ravasz, T. Vicsek, Physica A 299, 559 (2001) ADSCrossRefMATHGoogle Scholar
  14. 14.
    W.G. Sun, J.Y. Zhang, Y.Q. Wu, J. Stat. Mech. 2011, P03021 (2011) CrossRefGoogle Scholar
  15. 15.
    C. Borja, C. Puente, A. Medina, Electron. Lett. 34, 1443 (1998) CrossRefGoogle Scholar
  16. 16.
    E. Agliari, Phys. Rev. E 77, 011128 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    Z.Z. Zhang, S.Y. Gao, L.C. Chen, S.G. Zhou, H.J. Zhang, J.H. Guan, J. Phys. A 43, 395101 (2010) MathSciNetCrossRefGoogle Scholar
  18. 18.
    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    Z.Z. Zhang, S.Y. Gao, Eur. Phys. J. B 80, 209 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    Z.Z. Zhang, S.G. Zhou, W.L. Xie, L.C. Chen, Y. Lin, J.H. Guan, Phys. Rev. E 79, 061113 (2009) MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    S. Havlin, D. Ben-Avraham, Adv. Phys. 36, 695 (1987) ADSCrossRefGoogle Scholar
  22. 22.
    A.L. Lloyd, R.M. May, Science 292, 1316 (2001) CrossRefGoogle Scholar
  23. 23.
    F. Jasch, A. Blumen, Phys. Rev. E 63, 041108 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    J. Whitmarsh, J.A. Govindjee, Concepts in Photobiology: Photosynthesis and Photomorphogenesis (Narosa, New Delhi, 2004) Google Scholar
  25. 25.
    E.W. Montroll, J. Math. Phys. 10, 753 (1969) ADSCrossRefGoogle Scholar
  26. 26.
    F. Fouss, A. Pirotte, J.M. Renders, M. Saerens, IEEE Trans. Knowl. Data Eng. 19, 355 (2007) CrossRefGoogle Scholar
  27. 27.
    J.D. Noh, H. Rieger, Phys. Rev. Lett. 92, 118701 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    V. Sood, S. Redner, D. Ben-Avraham, J. Phys. A 38, 109 (2005) MathSciNetADSCrossRefMATHGoogle Scholar
  29. 29.
    A. Garciá Cantú, E. Abad, Phys. Rev. E 77, 031121 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    Z.Z. Zhang, A. Julaiti, B.Y. Hou, H.J. Zhang, G.R. Chen, Eur. Phys. J. B 84, 691 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Z.G. Huang, X.J. Xu, Z.X. Wu, Y.H. Wang, Eur. Phys. J. B 51, 549 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    S. Redner, A Guide to First-Passage processes (Cambrige University Press, Cambrige, 2001) Google Scholar
  33. 33.
    S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez, J. Klafter, Nature 450, 77 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    O. Bénichou, B. Meyer, V. Tejedor, R. Voituriez, Phys. Rev. Lett. 101, 130601 (2008) CrossRefGoogle Scholar
  35. 35.
    V. Tejedor, O. Bénichou, R. Voituriez, Phys. Rev. E 83, 066102 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    A. Kittas, S. Carmi, S. Havlin, P. Argyrakis, Europhys. Lett. 84, 40008 (2008) ADSCrossRefGoogle Scholar
  37. 37.
    Z.Z. Zhang, Y. Qi, S.G. Zhou, W.L. Xie, J.H. Guan, Phys. Rev. E 79, 021127 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    Z.Z. Zhang, J.H. Guan, W.L. Xie, Y. Qi, S.G. Zhou, Europhys. Lett. 86, 10006 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    E. Agliari, R. Burioni, Phys. Rev. E 80, 031125 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    V. Tejedor, O. Bénichou, R. Voituriez, Phys. Rev. E 80, 065104(R) (2009) ADSCrossRefGoogle Scholar
  41. 41.
    E. Agliari, R. Burioni, A. Manzotti, Phys. Rev. E 82, 011118 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    M. Barthélemy, A. Barrat, R. Pastor-Satorras, A. Vespignani, Physica A 346, 34 (2005) ADSCrossRefGoogle Scholar
  43. 43.
    M.F. Dai, D.D. Chen, Y.J. Dong, J. Liu, Physica A 391, 6165 (2012) ADSCrossRefGoogle Scholar
  44. 44.
    A. Krause et al., Nature 426, 282 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambrige University Press, Cambrige, 2004) Google Scholar
  46. 46.
    Z.Z. Zhang, T. Shan, G.R. Chen, Phys. Rev. E 87, 012112 (2013) ADSCrossRefGoogle Scholar
  47. 47.
    M. Tang, Z.H. Liu, J. Zhou, Phys. Rev. E 74, 036101 (2006) ADSCrossRefGoogle Scholar
  48. 48.
    C. Zhou, A.E. Motter, J. Kurths, Phys. Rev. Lett. 96, 034101 (2006) ADSCrossRefGoogle Scholar
  49. 49.
    G. Korniss, Phys. Rev. E 75, 051121 (2007) ADSCrossRefGoogle Scholar
  50. 50.
    W.X. Wang, G.R. Chen, Phys. Rev. E 77, 026101 (2008) ADSCrossRefGoogle Scholar
  51. 51.
    S. Kwon, S. Yoon, Y. Kim, Phys. Rev. E 77, 066105 (2008) ADSCrossRefGoogle Scholar
  52. 52.
    A. Baronchelli, R. Pastor-Satorras, Phys. Rev. E 82, 011111 (2010) ADSCrossRefGoogle Scholar
  53. 53.
    S. Kwon, W. Choi, Y. Kim, Phys. Rev. E 82, 021108 (2010) ADSCrossRefGoogle Scholar
  54. 54.
    Y.C. Zhang, Z.Z. Zhang, J.H. Guan, S.G. Zhou, J. Stat. Mech. 2011, P10001 (2011) CrossRefGoogle Scholar
  55. 55.
    A. Baronchelli, C. Castellano, R. Pastor-Satorras, Phys. Rev. E 83, 066117 (2011) ADSCrossRefGoogle Scholar
  56. 56.
    Y.C. Zhang, S. Zhou, Z.Z. Zhang, J.H. Guan, S.G. Zhou, G.R. Chen, IEEE Circ. Syst. Mag. 44, 33 (2012) CrossRefGoogle Scholar
  57. 57.
    M.F. Dai, J. Liu, J. Math. Phys. 53, 103501 (2012)MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    B.Y. Hou, H.J. Zhang, L. Liu, Eur. Phys. J. B 85, 311 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    A. Lakhtakia, V.K. Varadan, R. Messier, V.V. Varadan, J. Phys. A 20, 3537 (1987) MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    T. Carletti, S. Righi, Physica A 389, 2134 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    A.C. Wu, X.J. Xu, Z.X. Wu, Y.H. Wang, Chin. Phys. Lett. 24, 577 (2007) ADSCrossRefGoogle Scholar
  62. 62.
    E. Bollt, D. Ben-Avraham, New J. Phys. 7, 26 (2005) CrossRefGoogle Scholar
  63. 63.
    Z.Z. Zhang, Y.C. Zhang, S.G. Zhou, M. Yin, J.H. Guan, J. Math. Phys. 50, 033514 (2009) MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    J.G. Kemeny, J.L. Snell, Finite Markov Chains (Springer, New York, 1976) Google Scholar
  65. 65.
    Y. Lin, Z.Z. Zhang, Phys. Rev. E 87, 062140 (2013) ADSCrossRefGoogle Scholar
  66. 66.
    P.G. Doyle, J.L. Snell, Random Walks and Electric Networks (The Mathematical Association of America, Oberlin, 1984) Google Scholar
  67. 67.
    D.J. Klein, M. Randić, J. Math. Chem. 12, 81 (1993) MathSciNetCrossRefGoogle Scholar
  68. 68.
    A.K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, in Proceedings of the 21st Annual ACM Symposium on the Theory of Computing (ACM, New York, 1989), pp. 574–586 Google Scholar
  69. 69.
    P. Tetali, J. Theor. Probab. 4, 101 (1991) MathSciNetCrossRefMATHGoogle Scholar
  70. 70.
    I. Lukovits, S. Nikolić, N. Trinajstić, Int. J. Quant. Chem. 71, 217 (1999) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Business School, University of Shanghai for Science and TechnologyShanghaiP.R. China
  2. 2.Department of MathematicsShanghai UniversityShanghaiP.R. China

Personalised recommendations