Renormalized entropy for one dimensional discrete maps: periodic and quasi-periodic route to chaos and their robustness

  • Ozgur Afsar
  • Gokhan Baris Bagci
  • Ugur Tirnakli
Regular Article


We apply renormalized entropy as a complexity measure to the logistic and sine-circle maps. In the case of logistic map, renormalized entropy decreases (increases) until the accumulation point (after the accumulation point up to the most chaotic state) as a sign of increasing (decreasing) degree of order in all the investigated periodic windows, namely, period-2, 3, and 5, thereby proving the robustness of this complexity measure. This observed change in the renormalized entropy is adequate, since the bifurcations are exhibited before the accumulation point, after which the band-merging, in opposition to the bifurcations, is exhibited. In addition to the precise detection of the accumulation points in all these windows, it is shown that the renormalized entropy can detect the self-similar windows in the chaotic regime by exhibiting abrupt changes in its values. Regarding the sine-circle map, we observe that the renormalized entropy detects also the quasi-periodic regimes by showing oscillatory behavior particularly in these regimes. Moreover, the oscillatory regime of the renormalized entropy corresponds to a larger interval of the nonlinearity parameter of the sine-circle map as the value of the frequency ratio parameter reaches the critical value, at which the winding ratio attains the golden mean.


Statistical and Nonlinear Physics 


  1. 1.
    A.N. Kolmogorov, Probl. Inf. Transm. 1, 1 (1965)Google Scholar
  2. 2.
    G. Chaitin, J. Assoc. Comput. Mach. 13, 145 (1966)MathSciNetCrossRefGoogle Scholar
  3. 3.
    C.H. Bennett, Found. Phys. 16, 585 (1986)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    H. Pagels, S. Lloyd, Ann. Phys. 188, 186 (1988)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    J.S. Shiner, M. Davison, P.T. Landsberg, Phys. Rev. E 59, 1459 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    R. Lòpez-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    D.P. Feldman, J.P. Crutchfield, Phys. Lett. A 238, 244 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    M.E.J. Newman, Am. J. Phys. 79, 800 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    P. Saparin, A. Witt, J. Kurths, V. Anischenko, Chaos Sol. Fract. 4, 1907 (1994)ADSMATHCrossRefGoogle Scholar
  10. 10.
    J. Kurths et al., Chaos 5, 88 (1995)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A. Voss et al., Cardiovasc. Res. 31, 419 (1996)Google Scholar
  12. 12.
    K. Kopitzki, P.C. Warnke, J. Timmer, Phys. Rev. E 58, 4859 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Yu.L. Klimontovich, Physica A 142, 390 (1987)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Yu.L. Klimontovich, Chaos Sol. Fract. 5, 1985 (1994)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Yu.L. Klimontovich, Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open System (Kluwer Academic Publishers, Dordrecht, 1991)Google Scholar
  16. 16.
    Yu.L. Klimontovich, Z. Phys. B 66, 125 (1987)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Yu.L. Klimontovich, M. Bonitz, Z. Phys. B 70, 241 (1988)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    K. Kopitzki, P.C. Warnke, J. Timmer, Phys. Rev. E 58, 4859 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    R.Q. Quiroga, J. Arnold, K. Lehnertz, P. Grassberger, Phys. Rev. E 62, 8380 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    G.B. Bagci, U. Tirnakli, Int. J. Bifur. Chaos 19, 4247 (2009)CrossRefGoogle Scholar
  21. 21.
    G.B. Bagci, U. Tirnakli, Chaos 19, 033113 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    H. Haken, Information and Self-organization: A Macroscopic Approach to Complex Systems (Springer-Verlag, Berlin, 2000)Google Scholar
  23. 23.
    G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley-Interscience, New York, 1977), see especially Chapt. VIIGoogle Scholar
  24. 24.
    L. Rayleigh, Philos. Mag. 32, 529 (1916)Google Scholar
  25. 25.
    M.H. Jensen, L.P. Kadanoff, A. Libchaber, I. Procaccia, J. Stavans, Phys. Rev. Lett. 55, 2798 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    G.I. Taylor, Philos. Trans. Roy. Soc. London Ser. A 223, 289 (1923)ADSMATHCrossRefGoogle Scholar
  27. 27.
    E. Benjacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirok, T. Vicsek, Nature 368, 46 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    E. Palsson, E.C. Cox, Proc. Natl. Acad. Sci. 93, 1151 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    I. Prigogine, Time, Structure and Fluctuations, Nobel Lecture, 1977Google Scholar
  30. 30.
    P. Saparin, A. Witt, J. Kurths, V. Anishchenko, Chaos, Sol. Fract. 4, 1907 (1994)ADSMATHCrossRefGoogle Scholar
  31. 31.
    N. Wessel, A. Voss, J. Kurths, P. Saparin, A. Witt, H.J. Kleiner, R. Dietz, Comput. Cardiol. 137 (1994)Google Scholar
  32. 32.
    M.H. Jensen, L.P. Kadanoff, A. Libchaber, I. Procaccia, J. Stavans, Phys. Rev. Lett. 55, 2798 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    R.C. Hilborn, Chaos and Nonlinear Dynamics (Oxford University Press, New York, 1994), p. 390Google Scholar
  34. 34.
    E. Romera, K.D. Sen, Á. Nagy, J. Stat. Mech. P09016 (2011)Google Scholar
  35. 35.
    E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002), p. 219Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ozgur Afsar
    • 1
  • Gokhan Baris Bagci
    • 1
  • Ugur Tirnakli
    • 1
    • 2
  1. 1.Department of PhysicsFaculty of Science, Ege UniversityIzmirTurkey
  2. 2.Division of Statistical Mechanics and Complexity, Institute of Theoretical and Applied Physics (ITAP) Kaygiseki MevkiiTurunc, MuglaTurkey

Personalised recommendations