Noise-induced optical bistability and state transitions in spin-crossover solids with delayed feedback

Regular Article

Abstract

Considering the time-delayed feedback and environmental perturbations in spin-crossover system, we construct a stochastic delayed differential equation to study the state transitions from the low spin (LS) state to the high spin (HS) state in spin-crossover solids. It is shown that the delayed feedback and noise can induce optical bistability and state transitions. The mean first-passage time (MFPT) of the transition from the LS state to the HS state as the function of the noise intensity exhibits a maximum, and the noise-enhanced stability is observed. However the MFPT decreases with increase of the delayed feedback intensity, thus the delayed feedback accelerates the conversion from the LS state to the HS state.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. 106, 2109 (1994)CrossRefGoogle Scholar
  2. 2.
    A. Desaix, O. Roubeau, J. Jeftic, J.G. Haasnoot, K. Boukheddaden, E. Codjovi, J. Linarès, M. No-guès, F. Varret, Eur. Phys. J. B 6, 183 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    A. Hauser, C. Enachescu, M.L. Daku, A. Vargas, N. Amstutz, Coord. Chem. Rev. 250, 1642 (2006)CrossRefGoogle Scholar
  4. 4.
    M.A. Halcrow, Chem. Soc. Rev. 37, 278 (2008)CrossRefGoogle Scholar
  5. 5.
    Spin Crossover in Transition Metal Compounds I, II, III, edited by P. Gütlich, H.A. Goodwin (Springer-Verlag, Berlin, 2004)Google Scholar
  6. 6.
    S. Decurtins, P. Gütlich, C.P. Köhler, H. Spiering, A. Hauser, Chem. Phys. Lett. 105, 1 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    G. Gallé, D. Deldicque, J. Degert, Th. Forestier, J.-F. Létard, E. Freysz, Appl. Phys. Lett. 96, 041907 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    I. Krivokapic, P. Chakraborty, C. Enachescu, R. Bronisz, A. Hauser, Inorg. Chem. 50, 1856 (2011)CrossRefGoogle Scholar
  9. 9.
    C. Parreira, C. Enachescu, J. Linarès, K. Boukheddaden, F. Varret, J. Phys.: Condens. Matter 12, 9395 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Yu. Gudyma, O. Semenko, Phys. Status Solidi B 241, 370 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Iu.V. Gudyma, A.Iu. Maksymov, Physica B 405, 2534 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Iu.V. Gudyma, A.Iu. Maksymov, Semiconductor Physics, Quantum Electronics and Optoelectronics 13, 357 (2010)Google Scholar
  13. 13.
    Iu. Gudyma, A. Maksymov, Appl. Opt. 51, C55 (2012)CrossRefGoogle Scholar
  14. 14.
    Iu.V. Gudyma, A.Iu. Maksymov, J. Phys. Chem. Solids 72, 73 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Iu. Gudyma, A. Maksymov, S. Miyashita, Phys. Rev. E 84, 031126 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Iu. Gudyma, A. Maksymov, C. Enachescu, Eur. Phys. J. B 78, 167 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    L.S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    C. Masoller, Phys. Rev. Lett. 90, 020601 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    D. Huber, L.S. Tsimring, Phys. Rev. Lett. 91, 260601 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    D. Curtin, S.P. Hegarty, D. Goulding, J. Houlihan, Th. Busch, C. Masoller, G. Huyet, Phys. Rev. E 70, 031103 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    J. Houlihan, D. Goulding, Th. Busch, C. Masoller, G. Huyet, Phys. Rev. Lett. 92, 050601 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    C. Masoller, Phys. Rev. Lett. 88, 034102 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    N.B. Janson, A.G. Balanov, E. Schöll, Phys. Rev. Lett. 93, 010601 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    R. Yang, A. Song, Int. J. Mod. Phys. B 26, 1250019 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    T.L. To, N. Maheshri, Science 327, 1142 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    X.-P. Zhang, Z. Cheng, F. Liu, W. Wang, Phys. Rev. E 76, 031924 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    J. Tang, X. Yang, J. Ma, Y. Jia, Phys. Rev. E 80, 011907 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    X.-J. Tian, X.-P. Zhang, F. Liu, W. Wang, Phys. Rev. E 80, 011926 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    C.H. Zeng, H. Wang, Chem. Phys. 402, 1 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    C.H. Zeng, H. Wang, Ecol. Modell. 233, 52 (2012)CrossRefGoogle Scholar
  31. 31.
    C.H. Zeng et al., Eur. Phys. J. B 85, 347 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    A. Hauser, P. Gutlich, H. Spiering, Inorg. Chem. 25, 4245 (1986)CrossRefGoogle Scholar
  33. 33.
    A. Hauser, J. Chem. Phys. 94, 2741 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    F. Varret, K. Boukheddaden, J. Jeftic, O. Roubeau, Mol. Cryst. Liquid Cryst. 335, 561 (1999)CrossRefGoogle Scholar
  35. 35.
    T.L. Saaty, Modern Nonlinear Equations (Dover Publ., New York, 1981)Google Scholar
  36. 36.
    J. Wiener, J.K. Hale, Ordinary and Delay Differential Equations (Wiley, New York, 1992)Google Scholar
  37. 37.
    S. Guillouzic, I. L’Heureux, A. Longtin, Phys. Rev. E 59, 3970 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    S. Guillouzic, I. L’Heureux, A. Longtin, Phys. Rev. E 61, 4906 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    T.D. Frank, Phys. Rev. E 71, 031106 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    T.D. Frank, Phys. Rev. E 72, 011112 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    S. Decurtins, P. Gütlich, C.P. Köhler, H. Spiering, A. Hauser, Chem. Phys. Lett. 139, 1 (1984)ADSCrossRefGoogle Scholar
  42. 42.
    P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. Engl. 33, 2024 (1994)CrossRefGoogle Scholar
  43. 43.
    F. Varret, K. Boukheddaden, E. Codjovi, C. Enachescu, J. Linarès, Top. Curr. Chem. 234, 199 (2004)CrossRefGoogle Scholar
  44. 44.
    L. Ramírez-Piscina, J.M. Sancho, A. Hernadez-Machado, Phys. Rev. B 48, 125 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    E.A. Novikov, Zh. Eksp. Teor. Fiz. 47, 1919 (1964)Google Scholar
  46. 46.
    E.A. Novikov, Sov. Phys. JETP 20, 1290 (1964)Google Scholar
  47. 47.
    R.F. Fox, Phys. Rev. A 34, 4525 (1986)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    D.J. Wu, L. Cao, S.Z. Ke, Phys. Rev. E 50, 2496 (1994)ADSCrossRefGoogle Scholar
  49. 49.
    F. Castro, A.D. Sanchez, H.S. Wio, Phys. Rev. Lett. 75, 1691 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Jia, J.R. Li, Phys. Rev. Lett. 78, 994 (1997)ADSCrossRefGoogle Scholar
  51. 51.
    R. Messina, H. Löwen, Phys. Rev. Lett. 91, 146101 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    H. Kleinert, S. Schmidt, A. Pelster, Phys. Rev. Lett. 93, 160402 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    R.F. Fox, Phys. Rev. A 33, 467 (1986)MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    M.M. Kłosek-Dygas, B.J. Matkowsky, Z. Schuss, SIAM J. Appl. Math. 48, 425 (1988)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    M.M. Kłosek-Dygas, P.S. Hagan, J. Math. Phys. 39, 931 (1998)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    P. Hänggi, F. Marchesoni, P. Grigolini, Z. Phys. B 56, 333 (1984)ADSCrossRefGoogle Scholar
  57. 57.
    I. Dayan, M. Gitterman, G.H. Weiss, Phys. Rev. A 46, 757 (1992)ADSCrossRefGoogle Scholar
  58. 58.
    R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 76, 563 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of EducationKunming University of Science and TechnologyKunmingP.R. China
  2. 2.Faculty of ScienceKunming University of Science and TechnologyKunmingP.R. China

Personalised recommendations