Advertisement

Critical behavior of the Ising and Blume-Capel models on directed two-dimensional small-world networks

  • F.W.S. Lima
  • J.A. Plascak
Regular Article

Abstract

The critical properties of the two-dimensional Ising and Blume-Capel model on directedsmall-world lattices with quenched connectivity disorder are investigated. The disordered system is simulated by applying the Monte Carlo method with heat bath update algorithm and histogram re-weighting techniques. The critical temperature, as well as the critical exponents are obtained. For both models the critical parameters have been obtained for several values of the rewiring probability p. It is found that these disorder systems do not belong to the same universality class as two-dimensional ferromagnetic model on regular lattices. In particular, the Blume-Capel model, with zero crystal field interaction, on a directedsmall-world lattice presents a second-order phase transition for p < p c , and a first-order phase transition for p > p c , where p c  ≈ 0.25. The critical exponents for p < p c are different from those of the same model on a regular lattice, but are identical to the exponents of the Ising model on directedsmall-world lattice.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSMATHCrossRefGoogle Scholar
  2. 2.
    D.J. Watts, S.W. Strogatz, Nature 393, 440 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Novotny, Shannon M. Wheeler, Braz. J. Phys. 34, 395 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    D.P. Belanger, Braz. J. Phys. 30, 682 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    A. Barrat, M. Weigt, Eur. Phys. J. B 13, 547 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    M. Hinczewski, A.N. Berker, Phys. Rev. E 73, 066126 (2006) MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A.D. Sánchez, J.M. Lopes, M.A. Rodriguez, Phys. Rev. Lett. 88, 048701 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    F.W.S. Lima, E.M.S. Luz, R.N. Costa Filho, Multi-discip. Model. Mat. Str. 4, 1 (2009)Google Scholar
  9. 9.
    P.L. Ecuyer, Commun. ACM 31, 742 (1988)CrossRefGoogle Scholar
  10. 10.
    F.W.S. Lima, D. Stauffer, Physica A 359, 423 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    F.P. Fernandes, F.W.S. Lima, J.A. Plascak, Comput. Phys. Commun. 181, 1218 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    M.S.S. Challa, D.P. Landau, K. Binder, Phys. Rev. B 34, 1841 (1986) ADSCrossRefGoogle Scholar
  13. 13.
    W. Janke, Phys. Rev. B 47, 14757 (1993) ADSCrossRefGoogle Scholar
  14. 14.
    K. Binder, D.J. Herrmann, in Monte-Carlo Simulation in Statistical Physics, edited by P. Fulde (Springer-Verlag, Berlin, 1988), pp. 61–62Google Scholar
  15. 15.
    W. Janke, R. Villanova, Phys. Lett. A 209, 179 (1995) ADSCrossRefGoogle Scholar
  16. 16.
    P.E. Berche, C. Chatelain, B. Berche, Phys. Rev. Lett. 80, 297 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    K. Binder, Z. Phys. B 43, 119 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    X.S. Chen, V. Dohm, Phys. Rev. E 70, 056136 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    W. Selke, L.N. Shchur, J. Phys. A 38, L739 (2005) MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    E. Brezin, J. Zinn-Justin, Nucl. Phys. B 257, 867 (1985) ADSCrossRefGoogle Scholar
  21. 21.
    M.B. Hastings, Phys. Rev. Lett. 91, 098701 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    J.W. Duncan, Small Worlds: The Dynamics of Networks between Order and Randomness, in Princeton Studies in Complexity (Princeton University Press, 2004)Google Scholar
  23. 23.
    J.-S. Wang, W. Selke, V I.S. Dotsenko, V.B. Andreichenko, Physica A 164, 221 (1990) ADSCrossRefGoogle Scholar
  24. 24.
    P.H.L. Martins, J.A. Plascak, Phys. Rev. E 76, 012102 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dietrich Stauffer Computational Physics Lab, Departamento de Física, Universidade Federal do PiauíTeresinaBrazil
  2. 2.Departamento de Física, Universidade Federal de Minas GeraisBelo HorizonteBrazil
  3. 3.Center for Simulational Physics, University of GeorgiaAthens-GAUSA
  4. 4.Rudolf Peierls Centre for Theoretical Physics, University of OxfordOxfordEngland

Personalised recommendations