Carbon nanotubes as heat dissipaters in microelectronics

  • Alejandro Pérez Paz
  • Juan María García-Lastra
  • Troels Markussen
  • Kristian Sommer Thygesen
  • Angel Rubio
Regular Article
  • 276 Downloads

Abstract

We review our recent modelling work of carbon nanotubes as potential candidates for heat dissipation in microelectronics cooling. In the first part, we analyze the impact of nanotube defects on their thermal transport properties. In the second part, we investigate the loss of thermal properties of nanotubes in presence of an interface with various substances, including air and water. Comparison with previous works is established whenever is possible.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    A.K. Roy et al., ACS Appl. Mater. Inter. 4, 545 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Berber, Y.-K. Kwon, D. Tománek, Phys. Rev. Lett. 84, 4613 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Balandin, Nat. Mater. 10, 569 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59, R2514 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    D. Donadio, G. Galli, Phys. Rev. Lett. 99, 255502 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    D. Donadio, G. Galli, Phys. Rev. Lett. 103, 149901(E) (2009)ADSCrossRefGoogle Scholar
  7. 7.
    P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287, 1801 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    J. Enkovaara et al., J. Phys.: Condens. Matter 22, 253202 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 035109 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    T. Markussen, R. Rurali, M. Brandbyge, A.-P. Jauho, Phys. Rev. B 74, 245313 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    J.D. Gale, A.L. Rohl, Mol. Simul. 29, 291 (2003)MATHCrossRefGoogle Scholar
  15. 15.
    MATLAB, version 7.10.0 (R2010a) (The MathWorks Inc., 2010)Google Scholar
  16. 16.
    N. Mingo, D.A. Stewart, D.A. Broido, D. Srivastava, Phys. Rev. B 77, 033418 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    M.S. Dresselhaus, P.C. Eklund, Adv. Phys. 49, 705 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    G.D. Mahan, G.S. Jeon, Phys. Rev. B 70, 075405 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    T. Markussen, A.-P. Jauho, M. Brandbyge, Phys. Rev. B 79, 035415 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    T. Markussen, R. Rurali, A.-P. Jauho, M. Brandbyge, Phys. Rev. Lett. 99, 076803 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSMATHCrossRefGoogle Scholar
  22. 22.
    L.X. Benedict, S.G. Louie, M.L. Cohen, Solid State Commun. 100, 177 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    D.W. Brenner et al., J. Phys.: Condens. Matter 14, 783 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    D.W. Brenner, Phys. Rev. B 42, 9458 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    A.A. Rafati, S.M. Hashemianzadeh, Z.B. Nojini, N. Naghshineh, J. Comput. Chem. 31, 1443 (2010)Google Scholar
  27. 27.
    J. Yang, Y. Ren, A. Tian, H. Sun, J. Phys. Chem. B 104, 4951 (2000)CrossRefGoogle Scholar
  28. 28.
    V.R. Cervellera, M. Albertí, F. Huarte-Larrañaga, Int. J. Quantum Chem. 108, 1714 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    P. Giannozzi, R. Car, G. Scoles, J. Chem. Phys. 118, 1003 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    G. Arora, S.I. Sandler, J. Chem. Phys. 124, 084702 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    M.J. Bojan, A.V. Vernov, W.A. Steele, Langmuir 8, 901 (1992)CrossRefGoogle Scholar
  32. 32.
    M. Arab, F. Picaud, M. Devel, C. Ramseyer, C. Girardet, Phys. Rev. B 69, 165401 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Wu, H.L. Tepper, G.A. Voth, J. Chem. Phys. 124, 024503 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    R.W. Hockney, J.W. Eastwood Particle-Particle/Particle-Mesh (P3M) Algorithms, Computer Simulation using Particles (CRC Press, 1988)Google Scholar
  35. 35.
    J.M. García-Lastra, D.J. Mowbray, K.S. Thygesen, A. Rubio, K.W. Jacobsen, Phys. Rev. B 81, 245429 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    J. Kotakoski, A.V. Krasheninnikov, K. Nordlund, Phys. Rev. B 74, 245420 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    S. Berber, A. Oshiyama, Phys. Rev. B 77, 165405 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    S. Berber, A. Oshiyama, Physica B 376–377, 272 (2006)CrossRefGoogle Scholar
  39. 39.
    A.J. Lu, B.C. Pan, Phys. Rev. Lett. 92, 105504 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    A.V. Krasheninnikov, P.O. Lehtinen, A.S. Foster, R.M. Nieminen, Chem. Phys. Lett. 418, 132 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    R.G. Amorim, A. Fazzio, A. Antonelli, F.D. Novaes, A.J.R. Da Silva, Nano Lett. 7, 2459 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    J.A. Thomas, J.E. Turney, R.M. Iutzi, C.H. Amon, A.J.H. McGaughey, Phys. Rev. B 81, 081411 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alejandro Pérez Paz
    • 1
  • Juan María García-Lastra
    • 1
  • Troels Markussen
    • 2
  • Kristian Sommer Thygesen
    • 2
  • Angel Rubio
    • 1
  1. 1.Nano-Bio Spectroscopy group and European Theoretical Spectroscopy Facility (ETSF), Departamento Física de MaterialesUniversity of the Basque Country (UPV/EHU)San SebastiánSpain
  2. 2.Center for Atomic-scale Materials Design (CAMD), Department of PhysicsTechnical University of Denmark. Fysikvej 1Kgs. LyngbyDenmark

Personalised recommendations