Limits of structure stability of simple liquids revealed by study of relative fluctuations

  • A. L. Goncharov
  • V. V. Melent’ev
  • E. B. Postnikov
Regular Article


We analyse the inverse reduced fluctuations (inverse ratio of relative volume fluctuation to its value in the hypothetical case where the substance acts as an ideal gas for the same temperature-volume parameters) for simple liquids from experimental acoustic and thermophysical data along a coexistence line for both liquid and vapour phases. It has been determined that this quantity has a universal exponential character within the region close to the melting point. This behaviour satisfies the predictions of the mean-field (grand canonical ensemble) lattice fluid model and relates to the constant average structure of a fluid, i.e. redistribution of the free volume complementary to a number of vapour particles. The interconnection between experiment-based fluctuational parameters and self-diffusion characteristics is discussed. These results may suggest experimental methods for determination of self-diffusion and structural properties of real substances.


Statistical and Nonlinear Physics 


  1. 1.
    D. Bertolini, A. Tani, Phys. Rev. E 83, 031201 (2011)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    S. Zhou, AIP Advances 1, 040703 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    T.S. Ingebrigtsen, T.B. Schrøder, J.C. Dyre, Phys. Rev. X 2, 011011 (2012)CrossRefGoogle Scholar
  4. 4.
    S.N. Chakraborty, C. Chakravarty, Phys. Rev. E 76, 011201 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    X. Liu, W.D. Seider, T. Sinno, Phys. Rev. E 86, 026708 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    R.H. Fowler, E.A. Guggenheim, Proc. R. Soc. Lond. A 174, 189 (1940)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    T.D. Lee, C.N. Yang, Phys. Rev. 87, 410 (1952)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    I.C. Sanchez, R.H. Lacombe, J. Phys. Chem. 80, 2352 (1976)CrossRefGoogle Scholar
  9. 9.
    K. Binder, B. Mognetti, W. Paul, P. Virnau, L. Yelash, Polymer Thermodynamics 238, 329 (2011)CrossRefGoogle Scholar
  10. 10.
    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971)Google Scholar
  11. 11.
    The NIST Chemistry WebBook provides access to data compiled and distributed by NIST under the Standard Reference Data Program,
  12. 12.
    V.P. Skripov, Metastable liquids (Wiley, New York, 1974)Google Scholar
  13. 13.
    M. Dzhugutov, Nature 381, 137 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Errington, T.M. Truskett, J. Mittal, J. Chem. Phys. 125, 244502 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Z. Yan, S.V. Buldyrev, H.E. Stanley, Phys. Rev. E 78, 051201 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    H. Touba, G.A. Mansoori, Int. J. Thermophys. 18, 1217 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Rosenfeld, J. Phys.: Condens. Matter 11, 5415 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    J. Cervera, M. Gilabert, J. Manzanares, Am. J. Phys. 79, 206 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S. Chapman, T.S. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge University Press, Cambridge, 1991)Google Scholar
  20. 20.
    M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164 (1959)ADSCrossRefGoogle Scholar
  21. 21.
    S. Bastea, Phys. Rev. E 68, 031204 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    G. Goel, D.J. Lacks, J.A. Van Orman, Phys. Rev. E 84, 051506 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. L. Goncharov
    • 1
  • V. V. Melent’ev
    • 2
  • E. B. Postnikov
    • 1
  1. 1.Department of Theoretical PhysicsKursk State UniversityKurskRussia
  2. 2.Laboratory of Molecular AcousticsKursk State UniversityKurskRussia

Personalised recommendations