Advertisement

Statistical evidence of strain induced breaking of metallic point contacts

  • Monzer Alwan
  • Nadine Candoni
  • Philippe Dumas
  • Hubert R. Klein
Regular Article

Abstract

A scanning tunneling microscopy in break junction regime and a mechanically controllable break junction are used to acquire thousands of conductance-elongation curves by stretching until breaking and re-connecting Au junctions. From a robust statistical analysis performed on large sets of experiments, parameters such as lifetime, elongation and occurrence probabilities are extracted. The analysis of results obtained for different stretching speeds of the electrodes indicates that the breaking mechanism of di- and mono-atomic junction is identical, and that the junctions undergo atomic rearrangement during their stretching and at the moment of breaking.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    N. Agraït, A. Levy Yeyati, J.M. van Ruitenbeek, Phys. Rep. 377, 81 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    J.K. Gimzewski, R. Moller, Phys. Rev. B 36, 1284 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    C.J. Muller, J.M. van Ruitenbeek, L.J. de Longh, Phys. Rev. Lett. 69, 140 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    J. Moreland, J.W. Ekin, J. Appl. Phys. 58, 3888 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    E. Scheer, N. Agrait, J.C. Cuevas, A. Levy Yeyati, B. Ludolph, A. Martin-Rodero, G.B. Bollinger, J.M. van Ruitenbbek, C. Urbina, Nature 394, 154 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    L. de la Vega, A. Martin-Rodero, A. Levy Yeyati, A. Saul, Phys. Rev. B 70, 113107 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    F. Chen, J. Hihath, Z. Huang, X. Li, N.J. Tao, Ann. Rev. Phys. Chem. 58, 535 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    T. Leoni, M. Alwan, H. Klein, N. Candoni, A. Lereu, P. Dumas, Glob. J. Phys. Chem. 2, 97 (2011)Google Scholar
  9. 9.
    M. Tsutsui, K. Shoji, M. Taniguchi, T. Kawai, Nano Lett. 8, 345 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    M. Huang, F. Chen, P.A. Bennett, N.J. Tao, J. Am. Chem. Soc. 129, 13225 (2007)CrossRefGoogle Scholar
  11. 11.
    H. Klein, T. Leoni, R. Zoubkoff, P. Dumas, A. Saul, Nanotechnology 23, 235707 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    H. Klein, W. Blanc, R. Pierrisnard, C. Fauquet, P. Dumas. Eur. Phys. J. B 14, 371 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    O.Yu. Kolesnychenko, O.I. Shklyarevskii, H. van Kempen, Rev. Sci. Instrum. 70, 1442 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    T. Leoni, R. Zoubkoff, S. Homri, N. Candoni, P. Vidakovic, A. Ranguis, H. Klein, A. Saul, P. Dumas, Nanotechnology 19, 355401 (2008)CrossRefGoogle Scholar
  15. 15.
    G. Rubio-Bollinger, S.R. Bahn, N. Agraït, K.W. Jacobsen, S. Vieira, Phys. Rev. Lett. 87, 026101 (2001)ADSMATHCrossRefGoogle Scholar
  16. 16.
    P.Z. Coura, S.B. Legoas, A.S. Moreira, F. Sato, V. Rodrigues, S.O. Dantas, D. Ugarte, D.S. Galvao, Nano Lett. 4, 1187 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    M. Dreher, F. Pauly, J. Heurich, J.C. Cuevas, E. Scheer, P. Nielaba, Phys. Rev. B 72, 075435 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    A.I. Yanson, G. Rubio-Bollinger, H.E. van den Brom, N. Agrait, J.M. van Ruitenbeek, Nature 395, 783 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    G. Rubio, N. Agraït, S. Vieira, Phys. Rev. Lett. 76, 2302 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    P. Vélez, S.A. Dassie, E.P.M. Leiva, Chem. Phys. Lett. 460, 261 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Monzer Alwan
    • 1
  • Nadine Candoni
    • 1
  • Philippe Dumas
    • 1
  • Hubert R. Klein
    • 1
  1. 1.CNRS, CINAM UMR 7325Université Aix MarseilleMarseille Cedex 9France

Personalised recommendations