Physical network infrastructure design based on user communication patterns

Regular Article
  • 121 Downloads

Abstract

In order to ensure end-to-end links between the users of communication systems, the underlying physical communication network is usually designed independently. We present two design methods for such networks that depend on a particular logical communication network among users. The designs are optimized by minimizing the average path length between logically linked users. One physical network maintains a homogeneous distribution of degrees between nodes, whereas the other network permits each node to have as many degrees as possible. The data traffic capacity of the homogeneous network is always greater than that of the heterogeneous network. Moreover, the average path length of the homogeneous network is not much larger than in the heterogeneous case. This result supports the assertion that the limitation of degree in physical communication networks to meet the physical constraints of network equipment does not act as a harmful factor in the design of communication infrastructure.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L. Gyarmati, T.A. Trinh, ACM SIGCOMM Computer Commun. Rev. 40, 5 (2010)CrossRefGoogle Scholar
  2. 2.
    J.-Y. Shin, B. Wong, E.G. Sirer, in Proceedings of ACM Symposium on Cloud Computing, Cascais, 2011 Google Scholar
  3. 3.
    A. Arenas, A. Díaz-Guilera, R. Guimerà, Phys. Rev. Lett. 86, 3196 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    R.V. Solé, S. Valverde, Physica A 289, 595 (2001)ADSCrossRefMATHGoogle Scholar
  5. 5.
    S. Valverde, R.V. Solé, Physica A 312, 636 (2002)ADSCrossRefMATHGoogle Scholar
  6. 6.
    R. Guimerà, A. Díaz-Guilera, F. Vega-Redondo, A. Cabrales, A. Arenas, Phys. Rev. Lett. 89, 248701 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    G.-Q. Zhang, D. Wang, G.-J. Li, Phys Rev. E 76, 017101 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    M. Kurant, P. Thiran, Phys. Rev. Lett. 96, 138701 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    S. Panzieri, R. Setola, Int. J. Model. Ident. Contr. 3, 69 (2008)CrossRefGoogle Scholar
  10. 10.
    S.V. Buldyrev, R. Rarshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    V. Mancuso, S. Alouf, IEEE Trans. Sig. Proc. 55, 2646 (2011)Google Scholar
  12. 12.
    F. Wang, Y. Moreno, Y. Sun, Phys. Rev. E 73, 036123 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, A.-L. Barabási, Proc. Natl. Acad. Sci. USA 104, 7332 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    G. Caldarelli, Scale-free Networks: Complex Webs in Nature and Technology (Oxford University Press, 2007)Google Scholar
  15. 15.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    A.-L. Barabási, R. Albert, H. Jeong, Physica A 281, 69 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    B.J. Kim, Phys. Rev. E 69, 045101 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    L. Zhao, Y.-C. Lai, K. Park, N. Ye, Phys. Rev. E 71, 026125 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    G. Yan, T. Zhou, B. Hu, Z.-Q. Fu, B.-H. Wang, Phys. Rev. E 73, 046108 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    T. Ohira, R. Sawatari, Phys. Rev. E 58, 193 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    R. Guimera, A. Arenas, A. Diaz-Guilera, F. Giralt, Phys. Rev. E 66, 026704 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Mathematical ModelsNational Institute for Mathematical SciencesDaejeonSouth Korea
  2. 2.MtoV Co., Ltd.DaejeonSouth Korea

Personalised recommendations