Lévy noise-induced stochastic resonance in a bistable system

  • Yong Xu
  • Juanjuan Li
  • Jing Feng
  • Huiqing Zhang
  • Wei Xu
  • Jinqiao Duan
Regular Article

Abstract

The stochastic resonance phenomenon induced by Lévy noise in a second-order and under-damped bistable system is investigated. The signal-to-noise ratio for different parameters is computed by an efficient numerical scheme. The influences of the intensity and stability index of Lévy noise, as well as the amplitude of external signal on the occurrence of stochastic resonance phenomenon are characterized. The results imply that higher signal amplitude not only enhances the output power spectrum of system but also promotes stochastic resonance, and a proper adjustment of noise intensity in a certain range enlarges the peak value of output power spectrum which is significant for stochastic resonance. Moreover, with an appropriate damping parameter, lowering the stability index leads to larger fluctuations of Lévy noise, and further weakens the occurrence of the stochastic resonance.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998) ADSCrossRefGoogle Scholar
  2. 2.
    S. Mitaim, B. Kosko, Proc. IEEE 86, 2152 (1998) CrossRefGoogle Scholar
  3. 3.
    B. Gluckman, T. Netoff, E. Neel, W. Ditto, M. Spano, S. Schiff, Phys. Rev. Lett. 77, 19 (1996) CrossRefGoogle Scholar
  4. 4.
    S. Reinker, Ph.D. thesis, The University of British Columbia, New York, 2004 Google Scholar
  5. 5.
    B. Dybiec, E. Gudowska-Nowak, Acta Physica Polonica B 37, 5 (2006) Google Scholar
  6. 6.
    R. Kawai, S. Torigoe, K. Yoshida, A. Awazu, H. Nishimori, Phys. Rev. E 82, 051122 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    F. Guo, Y. Zhou, Physica A 388, 3371 (2009) MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    V. Anishchenko, A. Neiman, F. Moss, L. Schimansky-Geier, Phys.-Usp. 42, 7 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    B. Dybiec, E. Gudowska-Nowak, J. Stat. Mech. P05004, 1742 (2009) Google Scholar
  10. 10.
    R. Gu, Y. Xu, H. Zhang, Z. Sun, Acta Phys. Sin. 60, 110514 (2011) Google Scholar
  11. 11.
    R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    A. Dubkov, B. Spagnolo, Eur. Phys. J. Special Topics 216, 31 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    A. Dubkov, B. Spagnolo, V. Uchaikin, Int. J. Bifur. Chaos 18, 2649 (2008) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    A. Ichiki, M. Shiino, Europhys. Lett. 87, 30004 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    J. Huang, W. Tao, B. Xu, J. Phys. A 44, 385101 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    S. Zozor, C. Vignat, Phys. Rev. E 84, 031115 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    T. Srokowski, Phys. Rev. E 81, 051110 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    B. Dybiec, E. Gudowska-Nowak, Phys. Rev. E 75, 021109 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    B. Dybiec, J. Parrondo, E. Gudowska-Nowak, Europhys. Lett. 98, 50006 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    S. Denisov, H. Kantz, P. Hänggi, J. Phys. A 43, 285004 (2010) MathSciNetCrossRefGoogle Scholar
  21. 21.
    T. Srokowski, Phys. Rev. E 85, 021118 (2012) ADSCrossRefGoogle Scholar
  22. 22.
    I. Pavlyukevich, B. Dybiec, A. Chechkin, I. Sokolov, Eur. Phys. J. Special Topics 191, 223 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    T. Solomon, E. Weeks, H. Swinney, Phys. Rev. Lett. 71, 24 (1993) CrossRefGoogle Scholar
  24. 24.
    C. Nikias, M. Shao, Signal processing with alpha-stable distributions and applications (Wiley-Interscience, New York, 1995) Google Scholar
  25. 25.
    R. Gomory, B. Mandelbrot, Fractals and Scaling In Finance: Discontinuity, Concentration, Risk (Springer, New York, 1997) Google Scholar
  26. 26.
    I. Sokolov, W. Ebelling, B. Dybiec, Phys. Rev. E 83, 041118 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    D. Negrete, B. Carreras, V. Lynch, Phys. Rev. Lett. 94, 065003 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    C. Peng, J. Mietus, J. Hausdorff, S. Havlin, H. Stanley, A. Goldberger, Phys. Rev. Lett. 70, 9 (1993) CrossRefGoogle Scholar
  29. 29.
    R. Segev, M. Benveniste, E. Hulata, N. Cohen, A. Palevski, E. Kapon, Y. Shapira, E. Jacob, Phys. Rev. Lett. 88, 11 (2002) CrossRefGoogle Scholar
  30. 30.
    M. Lomholt, T. Ambjörnsson, R. Metzler, Phys. Rev. Lett. 95, 260603 (2005) ADSCrossRefGoogle Scholar
  31. 31.
    P. Ditlevsen, Geophys. Res. Lett. 26, 1441 (1999) ADSCrossRefGoogle Scholar
  32. 32.
    A. Dubkov, B. Spagnolo, Eur. Phys. J. B 65, 361 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    A. Cognata, D. Valenti, B. Spagnolo, A. Dubkov, Eur. Phys. J. B 77, 273 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    D. Brockmann, L. Hufnagel, T. Geisel, Nature 439, 462 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    B. Dybiec, Phys. Rev. E 80, 041111 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    L. Zhang, A. Song, J. He, J. Phys. A 44, 089501 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    A. Cognata, D. Valenti, A. Dubkov, B. Spagnolo, Phys. Rev. E 82, 011121 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    L. Zeng, R. Bao, B. Xu, J. Phys. A 40, 7175 (2007) MathSciNetADSMATHCrossRefGoogle Scholar
  39. 39.
    A. Kenfack, K. Singh, Phys. Rev. E 82, 046224 (2010) ADSCrossRefGoogle Scholar
  40. 40.
    F. Apostolico, L. Gammaitoni, F. Marchesoni, S. Santucci, Phys. Rev. E 55, 1 (1997) CrossRefGoogle Scholar
  41. 41.
    W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1966), Vol. 2 Google Scholar
  42. 42.
    M. Inchiosa, A. Bulsara, Phys. Rev. E 53, 3 (1996) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yong Xu
    • 1
  • Juanjuan Li
    • 1
  • Jing Feng
    • 1
  • Huiqing Zhang
    • 1
  • Wei Xu
    • 1
  • Jinqiao Duan
    • 2
    • 3
  1. 1.Department of Applied MathematicsNorthwestern Polytechnical UniversityXi’anP.R. China
  2. 2.Institute for Pure and Applied MathematicsLos AngelesUSA
  3. 3.Department of Applied Mathematics, Illinois Institute of TechnologyChicagoUSA

Personalised recommendations