Controlled dynamics on energy landscapes

Regular Article

Abstract

In systems with complex multi-minima energy landscapes, it is often not only the global minimum which is of great importance. For example, in materials science, metastable compounds corresponding to local minima on the landscape play a crucial role in many technological applications. In order to reach such modifications, both in computational and real world situations, it is necessary to optimally control the dynamics of the system on the landscape. We present a general method, how to design optimal temperature schedules for reaching particular basins on a complex landscape, by constructing a coarse-grained transition probability matrix from stochastic global landscape explorations, and subsequently using optimal control techniques on the Master equation describing the dynamics on the simplified energy landscape. As a demonstration example, the landscape of MgF2 is considered.

Keywords

Computational Methods 

References

  1. 1.
    D.J. Wales, Energy Landscapes with Applications to Clusters, Biomolecules and Glasses (Cambridge University Press, Cambridge, 2004)Google Scholar
  2. 2.
    J.C. Schön, M. Jansen, Int. J. Mat. Res. 100, 135 (2009) CrossRefGoogle Scholar
  3. 3.
    S.H. Northrup, J.T. Hynes, J. Chem. Phys. 73, 2700 (1980) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    R.F. Grote, J.T. Hynes, J. Chem. Phys. 73, 2715 (1980) MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    H. Grubmüller, Phys. Rev. E 52, 2893 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    J.C. Schön, M. Jansen, Z. Kristallogr. 216, 307 (2001) CrossRefGoogle Scholar
  7. 7.
    J.C. Schön, M. Jansen, Z. Kristallogr. 216, 361 (2001) CrossRefGoogle Scholar
  8. 8.
    J.-P. Aubin, A. Lesne, J. Math. Phys. 46, 043508 (2005) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    S.R. Williams, D.J. Evans, J. Chem. Phys. 127, 184101 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Schön, M.A.C. Wevers, M. Jansen, J. Phys.: Condens. Matter 15, 5479 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    K.H. Hoffmann, J.C. Schön, Found. Phys. Lett. 18, 171 (2005)MATHCrossRefGoogle Scholar
  12. 12.
    J.C. Schön, M. Jansen, Angew. Chem. Int. Ed. 35, 1286 (1996) CrossRefGoogle Scholar
  13. 13.
    S.M. Woodley, R. Catlow, Nat. Mater. 7, 937 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    A.-C. Garcia, in Proceedings of Les Houches School on Nonlinear Excitations in Biomolecules, Les Houches, 1994, edited by M. Peyrard (Springer, Berlin, 1994), pp. 191–208Google Scholar
  15. 15.
    S. Govindarajan, R.A. Goldstein, Proteins: Struct. Funct. Gen. 29, 461 (1997)CrossRefGoogle Scholar
  16. 16.
    S. Govindarajan, R.A. Goldstein, Biopolymers 42, 427 (1997)CrossRefGoogle Scholar
  17. 17.
    S.V. Krivov, M. Karplus, Proc. Natl. Acad. Sci. 101, 14766 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Fukunishi, Proteins: Struct. Funct. Gen. 33, 408 (1998)CrossRefGoogle Scholar
  19. 19.
    H. Frauenfelder, P.W. Fenimore, R.D. Young, IUBMB Life 59, 506 (2007)CrossRefGoogle Scholar
  20. 20.
    P. Sibani, Physica A 258, 249 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    T. Komatsuzaki, K. Hoshino, Y. Matsunaga, Regularity in Chaotic Transitions on Multibasin Landscapes, in Advances in Chemical Physics, Part B, edited by M. Toda, T. Komatsuzaki, T. Konishi, R. Stephen Berry, S.A. Rice (Applications to Chemical Reaction Dynamics in Complex Systems, Wiley, New York, 2005), Vol. 130, pp. 257–313Google Scholar
  22. 22.
    P. Sibani, J.C. Schön, P. Salamon, J.O. Andersson, Europhys. Lett. 22, 479 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    P. Salamon, P. Sibani, R. Frost, Facts, Conjectures, and Improvements for Simulated Annealing, in Monographs on Mathematical Modeling and Computation, 1st edn. (SIAM, Philadelphia, 2002), Vol. 7Google Scholar
  24. 24.
    M.A.C. Wevers, J.C. Schön, M. Jansen, J. Phys.: Condens. Matter 11, 6487 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    C.-B. Li, Y. Matsunaga, M. Toda, T. Komatsuzaki, J. Chem. Phys. 123, 184301 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    K.H. Hoffmann, P. Sibani, Phys. Rev. A 38, 4261 (1988) MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    P. Sibani, K.H. Hoffmann, Phys. Rev. Lett. 63, 2853 (1989) ADSCrossRefGoogle Scholar
  28. 28.
    C. de Groot, D. Würtz, K.H. Hoffmann, in Parallel Problem Solving from Nature, edited by H.P. Schwefel, R. Maenner (Springer-Verlag, Berlin, 1991), pp. 445–454Google Scholar
  29. 29.
    A. Fischer, K.H. Hoffmann, J.C. Schön, J. Phys. A 44, 1 (2011)CrossRefGoogle Scholar
  30. 30.
    M. Jansen, J.C. Schön, Angew. Chem. Int. Ed. 45, 3406 (2006) CrossRefGoogle Scholar
  31. 31.
    B. Andresen, K.H. Hoffmann, K. Mosegaard, J. Nulton, J.M. Pedersen, P. Salamon, J. Phys. 49, 1485 (1988) CrossRefGoogle Scholar
  32. 32.
    P. Salamon, J.D. Nulton, J.R. Harland, J. Pedersen, G. Ruppeiner, L. Liao, Comput. Phys. Commun. 49, 423 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    K.H. Hoffmann, D. Würtz, C. de Groot, M. Hanf, Concepts in Optimizing Simulated Annealing Schedules: an Adaptive Approach for Parallel and Vector Machines, in Parallel and Distributed Optimization, edited by M. Grauer, D.B. Pressmar (Springer-Verlag, Berlin, Heidelberg, New York, 1991), pp. 154–175Google Scholar
  34. 34.
    J. Lässig, K.H. Hoffmann, Phys. Rev. E 79, 046702 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    Finite-Time Thermodynamics and Thermoeconomics, edited by S. Sieniutycz, P. Salamon (Taylor and Francis, New York, 1990)Google Scholar
  36. 36.
    R.E. Kunz, P. Blaudeck, K.H. Hoffmann, R.S. Berry, J. Chem. Phys. 108, 2576 (1998) ADSCrossRefGoogle Scholar
  37. 37.
    J.C. Schön, Ber. Bunsenges. 100, 1388 (1996) CrossRefGoogle Scholar
  38. 38.
    J.C. Schön, H. Putz, M. Jansen, J. Phys.: Condens. Matter 8, 143 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    A.R. West, Solid State Chemistry and Its Applications (Wiley, New York, 1984)Google Scholar
  40. 40.
    A. Bach, D. Fischer, X. Mu, W. Sigle, P.A. van Aken, M. Jansen, Inorg. Chem. 50, 1563 (2011) CrossRefGoogle Scholar
  41. 41.
    M.A.C. Wevers, J.C. Schön, M. Jansen, J. Solid State Chem. 136, 223 (1998) CrossRefGoogle Scholar
  42. 42.
    M.A.C. Wevers, J.C. Schön, M. Jansen, J. Phys. A 34, 4041 (2001) ADSMATHCrossRefGoogle Scholar
  43. 43.
    M.A.C. Wevers, Energetische und entropische Aspekte der Energielandschaften von MgF2, CaF2 und Li x Na6−x N2 ( x = 0,1,...,6) sowie ein Vergleich mit ab-initio-Rechnungen, Ph.D. thesis, University of Bonn, 1999 Google Scholar
  44. 44.
    K.H. Hoffmann, P. Salamon, Appl. Math. Lett. 22, 1471 (2009) MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    K.H. Hoffmann, P. Salamon, Physica A 390, 3086 (2011) MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    V.F. Krotov, Control and Cybernetics 17, 115 (1988)MathSciNetMATHGoogle Scholar
  47. 47.
    K. Ergenzinger, K.H. Hoffmann, P. Salamon, J. Appl. Phys. 77, 5501 (1995) ADSCrossRefGoogle Scholar
  48. 48.
    A. Franz, K.H. Hoffmann, J. Comput. Phys. 176, 196 (2002) MathSciNetADSMATHCrossRefGoogle Scholar
  49. 49.
    M. Santoro, J.C. Schön, M. Jansen, Phys. Rev. E 76, 1 (2007)CrossRefGoogle Scholar
  50. 50.
    J.C. Schön, Z. Anorg. Allg. Chem. 635, 1794 (2009) CrossRefGoogle Scholar
  51. 51.
    F. Heilmann, K.H. Hoffmann, Europhys. Lett. 70, 155 (2005)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karl Heinz Hoffmann
    • 1
  • Johann Christian Schön
    • 2
  1. 1.Institut für PhysikTechnische Universität ChemnitzChemnitzGermany
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations