Steady Schrödinger cat state of a driven Ising chain

Regular Article

Abstract

For short-range interacting systems, no Schrödinger cat state can be stable when their environment is in thermal equilibrium. We show, by studying a chain of two-level systems with nearest-neighbour Ising interactions, that this is possible when the surroundings consists of two heat reservoirs at different temperatures, or of a heat reservoir and a monochromatic field. The asymptotic state of the considered system can be a pure superposition of mesoscopically distinct states, the all-spin-up and all-spin-down states, at low temperatures. The main feature of our model leading to this result is the fact that the Hamiltonian of the chain and the dominant part of its coupling to the environment obey the same symmetry.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    W.H. Zurek, Phys. Rev. D 26, 1862 (1982) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    E. Joos, H.D. Zeh, Z. Phys. B 59, 223 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    J.S. Bell, Physics 1, 195 (1964)Google Scholar
  4. 4.
    R.F. Werner, Phys. Rev. A 40, 4277 (1989) ADSCrossRefGoogle Scholar
  5. 5.
    P.J. Dodd, J.J. Halliwell, Phys. Rev. A 69, 052105 (2004) MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    L. Jacóbczyk, A. Jamróz, Phys. Lett. A 333, 35 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    S. Camalet, Eur. Phys. J. B 84, 467 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    B. Kraus et al., Phys. Rev. A 78, 042307 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    F. Verstraete, M.M. Wolf, J.I. Cirac, Nat. Phys. 5, 633 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Ticozzi, L. Viola, Phil. Trans. R. Soc. A 370, 5259 (2012) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    C.A. Muschik, E.S. Polzik, J.I. Cirac, Phys. Rev. A 83, 052312 (2011) ADSCrossRefGoogle Scholar
  13. 13.
    H. Krauter et al., Phys. Rev. Lett. 107, 080503 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    C.A. Muschik et al., J. Phys. B 45, 124021 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    J.T. Barreiro et al., Nature 470, 486 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    P. Schindler et al., arXiv:1212.2418 Google Scholar
  17. 17.
    E. Schrödinger, Naturwissenschaften 23, 807 (1935)ADSCrossRefGoogle Scholar
  18. 18.
    E. Schrödinger, Naturwissenschaften 23, 823 (1935)ADSCrossRefGoogle Scholar
  19. 19.
    E. Schrödinger, Naturwissenschaften 23, 844 (1935)ADSCrossRefGoogle Scholar
  20. 20.
    A.O. Caldeira, A.J. Leggett, Phys. Rev. A 31, 1059 (1985) ADSCrossRefGoogle Scholar
  21. 21.
    D.F. Walls, G.J. Milburn, Phys. Rev. A 31, 2403 (1985) MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    M. Mohammadi, M.H. Naderi, M. Soltanolkotabi, Eur. Phys. J. D 47, 295 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    J. Paavola, M.J.W. Hall, M.G.A. Paris, S. Maniscalco, Phys. Rev. A 84, 012121 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland, Science 272, 1131 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996) ADSCrossRefGoogle Scholar
  26. 26.
    S. Deléglise et al., Nature 455, 510 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    J.R. Friedman, V. Patel, W. Chen, S.K. Tolpygo, J.E. Lukens, Nature 406, 43 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    C.A. Sackett et al., Nature 404, 256 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    D. Leibfried et al., Nature 438, 639 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H.J. Briegel, J.-W. Pan, Nature 430, 54 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    J.S. Lee, A.K. Khitrin, Appl. Phys. Lett. 87, 204109 (2005) ADSCrossRefGoogle Scholar
  32. 32.
    A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, P. Grangier, Science 312, 83 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    W.-B. Gao et al., Nat. Phys. 6, 331 (2010)CrossRefGoogle Scholar
  34. 34.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Processus d’Interaction entre Photons et Atomes (CNRS Editions, Paris, 1988)Google Scholar
  35. 35.
    S. Camalet, R. Chitra, Phys. Rev. B 75, 094434 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    S. Camalet, R. Chitra, Phys. Rev. Lett. 99, 267202 (2007) ADSCrossRefGoogle Scholar
  37. 37.
    J. Restrepo, R. Chitra, S. Camalet, E. Dupont, Phys. Rev. B 84, 245109 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    J. Restrepo, S. Camalet, R. Chitra, arXiv:1207.0726 Google Scholar
  39. 39.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)ADSCrossRefGoogle Scholar
  40. 40.
    P. Zanardi, M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997) ADSCrossRefGoogle Scholar
  41. 41.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  42. 42.
    B. Bellomo, R. Messina, M. Antezza, Europhys. Lett. 100, 20006 (2012) ADSCrossRefGoogle Scholar
  43. 43.
    B. Bellomo, R. Messina, D. Felbacq, M. Antezza, Phys. Rev. A 87, 012101 (2013) ADSCrossRefGoogle Scholar
  44. 44.
    U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993)Google Scholar
  45. 45.
    A. Peres, Phys. Lett. A 202, 16 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  46. 46.
    A.V. Thapliyal, Phys. Rev. A 59, 3336 (1999) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600, Université Pierre et Marie Curie, JussieuParisFrance

Personalised recommendations