Self-interstitial clusters in radiation damage accumulation: coupled molecular dynamics and metadynamics simulations

Regular Article

Abstract

Self-interstitial interactions causing volume expansion in bcc Fe are studied through an idealized microstructure evolution model in which only self-interstial atoms (SIAs) are inserted. Using a combination of non-equilibrium molecular dynamics simulations and a metadynamics algorithm, meta-stable SIA clusters are observed to nucleate and grow into dislocation loops or localized amorphous phases, both contributing to swelling behavior persisting well beyond the atomistic time scale. A non-monotonic local density variation with dose rate is found and attributed to competing evolutions of different defective structures.

Keywords

Computational Methods 

References

  1. 1.
    L.K. Mansur, J. Nucl. Mat. 216, 97 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    M.T. Robinson, J. Nucl. Mat. 216, 1 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    C. Cawthorne, E. Fulton, Nature 216, 575 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    F.A. Garner, W.G. Wolfer, J. Nucl. Mat. 122-123, 201 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    T. Okita, T. Sato, N. Sekimura, F.A. Garner, L.R. Greenwood, J. Nucl. Mat. 307, 322 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M.P. Surh, J.B. Sturgeon, W.G. Wolfer, J. Nucl. Mat. 378, 86 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    A. Vehanen et al., Phys. Rev. B 26, 762 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Limoge, A. Barbu, Phys. Rev. B 30, 2212 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    J. Nord, K. Nordlund, J. Keikonen, Phys. Rev. B 65, 165329 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    H. Hsieh, S. Yip, Phys. Rev. Lett. 59, 2760 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    M.J. Caturla, T. Diaz de la Rubia, G. Gilmer, J. Appl. Phys. 77, 3120 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    A. Kushima et al., J. Chem. Phys. 130, 224504 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Fan, A. Kushima, B. Yildiz, Phys. Rev. B 81, 104102 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    P.R. Monasterio Velasquez, Ph.D. thesis, Massachusetts Institute of Technology, 2010Google Scholar
  15. 15.
    G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S.W. Han, A.V. Barashev, J. Phys.: Condens. Matter 16, S2629 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    D.S. Gelles, J. Nucl. Mat. 225, 163 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Limoge, A. Rahman, H. Hsieh, S. Yip, J. Non-Cryst. Sol. 99, 75 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. 99, 12562 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    A. Laio, F.L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    M.P. Surh, J.B. Sturgeon, W.G. Wolfer, J. Nucl. Mat. 328, 107 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    J. Li, Modelling Simul. Mater. Sci. Eng. 11, 173 (2003)ADSMATHCrossRefGoogle Scholar
  22. 22.
    A. Rota et al., Surf. Sci. 600, 3718 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations