Advertisement

First principles calculations for band-gap energy properties of non-polar and semi-polar ternary nitride alloys under in-plane strain

  • Han Yan
  • Sheng Liu
  • Rongjun Zhang
  • Pei Wang
  • Zhiyin Gan
Regular Article
  • 329 Downloads

Abstract

Strain-induced band-gap energies properties of non-polar and semi-polar ternary nitride alloys are investigated by first-principles calculation based on density functional theory. The tensile and compressive strains in non-polar and semi-polar plane of wurtzite structures are analyzed and discussed. From the calculation results, we find that the band-gap energies of both Al0.5Ga0.5N and In0.5Ga0.5N super-cells under strains in m-plane (1100) are smaller than that in a-plane (1120). In addition, m-plane (1100) Al0.5Ga0.5N based optoelectronic device will have more significant shift of emission wavelength than a-plane (1120) and semi-polar plane (1122) with the same strains. The tensile and compressive strains in semi-polar plane have similar magnitude of influence on the emission wavelength of In0.5Ga0.5N. The calculations provide a qualitative picture of the strain effects on the band-gap energy.

Keywords

Solid State and Materials 

References

  1. 1.
    J.W. Park, Y.B. Yoon, S.H. Shih, Mater. Sci. Eng. A 441, 357 (2006)CrossRefGoogle Scholar
  2. 2.
    N. Narendran, Y. Gu, J.P. Freyssinier-Nova, Y. Zhu, Phys. Status Solidi A 202, 60 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Taniyasu, A. Yoshikawa, J. Electron. Mater. 30, 1402 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, T. Taguchi, Jpn J. Appl. Phys. 40, 583 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    S. Liu, X.B. Luo, LED Packaging for Lighting Applications: Design, Manufacturing and Testing (Chemical Industry Press, John Wiley & Sons, 2011)Google Scholar
  6. 6.
    C.H. Chiang, K.M. Chen, Y.H. Wu, Appl. Surf. Sci. 257, 2415 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Y.G. Seo, K.H. Baik, K.M. Song, Curr. Appl. Phys. 10, 1407 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    C. Wetzel, M. Zhu, J. Senawiratne, T. Detchprohm, P.D. Persans, L. Liu, E.A. Preble, D. Hanser, J. Cryst. Growth 310, 3987 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    M.F. Schubert, J.R. Xu, J.K. Kim, Appl. Phys. Lett. 93, 041102 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    L. Zhou, R. Chandrasekaran, T.D. Moustakas, D.J. Smith, J. Cryst. Growth 310, 2981 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    B.A. Haskell, S. Nakamura, S.P. DenBaars, Phys. Status Solidi B 244, 2847 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    K.C. Kim, M. Schmidt, H. Sato, Appl. Phys. Lett. 91, 181120 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    D. Feexell, M. Schmidt, S.P. DenBaars, S. Nakamura, Mater. Res. Soc. Bull. 34, 318 (2009)CrossRefGoogle Scholar
  14. 14.
    Y.H. Yoo, W. Lee, H. Shin, Physica E 21, 126 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    H. Yan, Z.Y. Gan, S. Liu, First-principles based modeling for influence of epitaxy and packaging induced strains on emission properties of III-nitrides LED chips, Conference on Electronic Packaging Technology & High Density Packaging, (ICEPT-HDP ’09) (Shanghai, 2009), pp. 429–432Google Scholar
  16. 16.
    R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    J. Hutter, M. Iannuzzi, Z. Kristallogr. 220, 549 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 54, 1703 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    C. Bungaro, K. Rapcewicz, J. Bernholc, Phys. Rev. B 61, 6720 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    S.H. Wei, A. Zunger, J. Appl. Phys. 76, 3846 (1995)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Han Yan
    • 1
    • 2
  • Sheng Liu
    • 1
    • 2
  • Rongjun Zhang
    • 1
    • 2
  • Pei Wang
    • 2
  • Zhiyin Gan
    • 1
    • 2
  1. 1.Institute for Microsystems, State Key Lab for Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science & TechnologyWuhanP.R. China
  2. 2.Divisions of MOEMS, Wuhan National Laboratory for OptoelectronicsWuhanP.R. China

Personalised recommendations