Dynamic compensation temperature in the kinetic spin-2 Ising model in an oscillating magnetic field on alternate layers of a hexagonal lattice

Regular Article

Abstract

The dynamic behavior of a two-sublattice spin-2 Ising model with a crystal-field interaction in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ = 2 and S = 2. We employ the Glauber transition rates to construct the mean-field dynamic equations. First, we study the time variations of the average sublattice magnetizations to find the phases in the system, and the thermal behavior of the dynamic sublattice magnetizations to characterize the nature (continuous and discontinuous) of the phase transitions and to obtain the dynamic phase transition (DPT) points. Then, the behavior of the dynamic total magnetization as a function of the temperature is investigated to find the dynamic compensation temperatures as well as to determine the type of compensation behavior. We present the dynamic phase diagrams including the dynamic compensation temperatures in the nine different planes. Phase diagrams contain the paramagnetic (p), antiferromagnetic-1 (a f 1), antiferromagnetic-2 (a f 2) and ferrimagnetic (i) fundamental phases, five different mixed phases and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    L. Néel, Ann. Phys. 3, 137 (1948)Google Scholar
  2. 2.
    M. Mansuripur, J. Appl. Phys. 61, 1580 (1987) ADSCrossRefGoogle Scholar
  3. 3.
    G.M. Buendía, E. Machado, Phys. Rev. B 61, 14686 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    S. Ohkoshi, A. Yukinori, F. Akira, K. Hashimoto, Phys. Rev. Lett. 82, 1285 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    H.P.D. Shieh, M.H. Kryder, Appl. Phys. Lett. 49, 473 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    T. Kaneyoshi, Solid State Commun. 93, 691 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    O.F. Abubrig, A. Bobák, D. Horváth, M. Jaščur, Czech. J. Phys. 52, 131 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    E. Machado, G.M. Buendía, Phys. Rev. B 68, 224411 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    B. Boechat, R.A. Filgueiras, C. Cordeiro, N.S. Branco, Physica A 304, 429 (2002) ADSMATHCrossRefGoogle Scholar
  10. 10.
    G.M. Buendía, W. Cardona, Phys. Rev. B 59, 6784 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    J. Oitmaa, Phys. Rev. B 72, 224404 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    N. Benayad, T. Lahcini, A. Fathi, Condens. Matter 8, 33 (2007)Google Scholar
  13. 13.
    J. Dely, A. Bobák, M. Zukovié, Phys. Lett. A 373, 3197 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    A. Bobák, M. Jacšur, Phys. Rev. B 51, 11533 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    T. Kaneyoshi, M. Jačšur, P. Tomczak, J. Phys.: Condens. Matter 4, L653 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    A. Bobák, M. Jacšur, D. Horváth, T. Balcerzak, Czech. J. Phys. 52, 127 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    W. Jiang, G. Wei, Z. Zhang, Phys. Rev. B 68, 134432 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    B. Deviren, M. Keskin, O. Canko, J. Magn. Magn. Mater. 388, 1835 (2009) Google Scholar
  19. 19.
    G.M. Buendía, M.A. Novotny, J. Phys.: Condens. Matter 9, 5951 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    E. Albayrak, Physica B: Condens. Matter 391, 47 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    C. Ekiz, R. Erdem, Phys. Lett. A 352, 291 (2006) ADSMATHCrossRefGoogle Scholar
  22. 22.
    C. Ekiz, J. Magn. Magn. Mater. 307, 139 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    M. Keskin, M. Ertaş, J. Stat. Phys. 139, 333 (2010) ADSMATHCrossRefGoogle Scholar
  24. 24.
    M. Godoy, V.S. Leite, W. Figueiredo, Phys. Rev. B 69, 054428 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    M. Keskin, B. Deviren, O. Canko, IEEE Trans. Magn. 45, 2640 (2009) ADSCrossRefGoogle Scholar
  26. 26.
    B. Deviren, M. Keskin, J. Stat. Phys. 140, 934 (2010) MathSciNetADSMATHCrossRefGoogle Scholar
  27. 27.
    M. Keskin, E. Kantar, J. Magn. Magn. Mater. 322, 2789 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    M. Keskin, M. Ertaş, Phys. Rev. E 80, 061140 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    Ü. Temizer, M. Keskin, O. Canko, J. Magn. Magn. Mater. 321, 2999 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    R.J. Glauber, J. Math. Phys. 4, 294 (1963)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    M. Keskin, O. Canko, M. Ertaş, J. Exp. Theor. Phys. 105, 1190 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    M. Ertaş, O. Canko, M. Keskin, J. Magn. Magn. Mater. 320, 1765 (2008) CrossRefGoogle Scholar
  33. 33.
    M. Ertaş, M. Keskin, O. Canko, J. Korean, Phys. Soc. 53, 1807 (2009) Google Scholar
  34. 34.
    M. Ertaş, B. Deviren, M. Keskin, J. Magn. Magn. Mater. 324, 704 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    G. Chern, L. Horng, W.K. Shieh, T.C. Wu, Phys. Rev. B 63, 094421 (2001) ADSCrossRefGoogle Scholar
  36. 36.
    H. Kageyama, D.I. Khomskii, R.Z. Levitin, A.N. Vasilév, Phys. Rev. B 67, 224422 (2003) ADSCrossRefGoogle Scholar
  37. 37.
    S. Chikazumi, Physics of Ferromagnetism (Oxford University Press, 1997), p. 655Google Scholar
  38. 38.
    O. Canko, B. Deviren, M. Keskin, JETP Lett. 87, 633 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    B. Deviren, O. Canko, M. Keskin, J. Magn. Magn. Mater. 321, 1231 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    J. Strečka, Physica A 360, 379 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsBozok UniversityYozgatTurkey
  2. 2.Institute of ScienceBozok UniversityYozgatTurkey

Personalised recommendations