Topological phase transition and electrically tunable diamagnetism in silicene

Regular Article

Abstract

Silicene is a monolayer of silicon atoms forming a honeycomb lattice. The lattice is actually made of two sublattices with a tiny separation. Silicene is a topological insulator, which is characterized by a full insulating gap in the bulk and helical gapless edges. It undergoes a phase transition from a topological insulator to a band insulator by applying external electric field. Analyzing the spin Chern number based on the effective Dirac theory, we find the origin to be a pseudospin meron in the momentum space. The peudospin degree of freedom arises from the two-sublattice structure. Our analysis makes clear the mechanism how a phase transition occurs from a topological insulator to a band insulator under increasing electric field. We propose a method to determine the critical electric field with the aid of diamagnetism of silicene. Diamagnetism is tunable by the external electric field, and exhibits a singular behaviour at the critical electric field. Our result is important also from the viewpoint of cross correlation between electric field and magnetism. Furthermore, nano-electromechanic devices transforming electric force to mechanical force may be feasible. Our finding will be important for future electro-magnetic correlated devices.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    P. Vogt, P. De Padova, C. Quaresima, J.A.E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G.L. Lay, Phys. Rev. Lett. 108, 155501 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    C.-L. Lin, R. Arafune, K. Kawahara, N. Tsukahara, E. Minamitani, Y. Kim, N. Takagi, M. Kawai, Appl. Phys. Express 5, 045802 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Phys. Rev. Lett. 108, 245501 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    C.-C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 107, 076802 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    M. Ezawa, New J. Phys. 14, 033003 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M. Ezawa, J. Phys. Soc. Jpn 81, 064705 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J.W. McClure, Phys. Rev. 104, 666 (1956)ADSCrossRefGoogle Scholar
  9. 9.
    J.W. McClure, Phys. Rev. 119, 606 (1960)ADSCrossRefGoogle Scholar
  10. 10.
    M. Koshino, Y. Arimura, T. Ando, Phys. Rev. Lett. 102, 177203 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M. Koshino, T. Ando, Phys. Rev. B 81, 195431 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    M. Nakamura, Phys. Rev. B 76, 113301 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Arimura, T. Ando, J. Phys. Soc. Jpn 81, 024702 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    C.-C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    H. Min, J.E. Hill, N.A. Sinitsyn, B.R. Sahu, L. Kleinman, A.H. MacDonald, Phys. Rev. B 74, 165310 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    W.K. Tse, Z. Qiao, Y. Yao, A.H. MacDonald, Qian Niu, Phys. Rev. B 83, 155447 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    E. Prodan, Phys. Rev. B 80, 125327 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Yang, Z. Xu, L. Sheng, B. Wang, D.Y. Xing, D.N. Sheng, Phys. Rev. Lett. 107, 066602 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    H. Fukuyama, Prog. Theor. Phys. 45, 704 (1971)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Phys. Rev. B 76, 073103 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Nat. Mater. 6, 770 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Applied PhysicsUniversity of TokyoTokyoJapan

Personalised recommendations