Statistical properties of power-law random banded unitary matrices in the delocalization-localization transition regime

Regular Article
  • 106 Downloads

Abstract

Power-law random banded unitary matrices (PRBUM), whose matrix elements decay in a power-law fashion, were recently proposed to model the critical statistics of the Floquet eigenstates of periodically driven quantum systems. In this work, we numerically study in detail the statistical properties of PRBUM ensembles in the delocalization-localization transition regime. In particular, implications of the delocalization-localization transition for the fractal dimension of the eigenvectors, for the distribution function of the eigenvector components, and for the nearest neighbor spacing statistics of the eigenphases are examined. On the one hand, our results further indicate that a PRBUM ensemble can serve as a unitary analog of the power-law random Hermitian matrix model for Anderson transition. On the other hand, some statistical features unseen before are found from PRBUM. For example, the dependence of the fractal dimension of the eigenvectors of PRBUM upon one ensemble parameter displays features that are quite different from that for the power-law random Hermitian matrix model. Furthermore, in the time-reversal symmetric case the nearest neighbor spacing distribution of PRBUM eigenphases is found to obey a semi-Poisson distribution for a broad range, but display an anomalous level repulsion in the absence of time-reversal symmetry.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    M.L. Mehta, Random Matrices, 3rd edn. (Elsevier, San Diego, 2004)Google Scholar
  2. 2.
    C.E. Porter, in Statistical Theories of Spectra: Fluctuations, edited by C.E. Porter (Academic, New York, 1965)Google Scholar
  3. 3.
    Mesoscopic Phenomena in Solids, edited by B.L. Altshuler et al. (Elsevier, Amsterdam, 1991)Google Scholar
  4. 4.
    H.S. Camarda, P.D. Georgopulos, Phys. Rev. Lett. 50, 492 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    V. Plerou et al., Phys. Rev. Lett. 83, 1471 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    L. Laloux et al., Phys. Rev. Lett. 83, 1467 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Santhanam, P.K. Patra, Phys. Rev. E 64, 016102 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    P. Seba, Phys. Rev. Lett. 91, 198104 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    S.N. Dorogovtsev et al., Phys. Rev. E 68, 046109 (2003)ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    J.N. Bandyopadhyay, S. Jalan, Phys. Rev. E 76, 026109 (2007)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    S. Jalan, J.N. Bandyopadhyay, Phys. Rev. E 76, 046107 (2007)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    P. Shukla, Phys. Rev. E 75, 051113 (2007)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    P. Shukla, Phys. Rev. Lett. 87, 194102 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    F. Haake, Quantum Signatures of Chaos (Springer-Verlag, New York, 1992)Google Scholar
  15. 15.
    L.E. Reichl, The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations (Springer-Verlag, New York, 1992)Google Scholar
  16. 16.
    O. Bohigas, M.J. Giannoni, C. Schmit, Phys. Rev. Lett. 52, 1 (1984)ADSMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    M.V. Berry, M. Tabor, Proc. R. Soc. A 356, 375 (1977)ADSMATHCrossRefGoogle Scholar
  18. 18.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  19. 19.
    F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    J. Billy et al., Nature 453, 891 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    G. Lemarié, H. Lignier, D. Delande, P. Szriftgiser, J.C. Garreau, Phys. Rev. Lett. 105, 090601 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    B.I. Shklovskii et al., Phys. Rev. B 47, 11487 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    A.D. Mirlin et al., Phys. Rev. E 54, 3221 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    P.G. Harper, Proc. Phys. Soc. London Sec. A 68, 874 (1955)ADSMATHCrossRefGoogle Scholar
  25. 25.
    P.G. Harper, Proc. Phys. Soc. London Sec. A 68, 879 (1955)ADSMATHCrossRefGoogle Scholar
  26. 26.
    K. Drese, M. Holthaus, Phys. Rev. Lett. 78, 2932 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    G. Casati, I. Guarneri, D.L. Shepelyansky, Phys. Rev. Lett. 62, 345 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    J. Wang, A.M. García-García, Phys. Rev. E 79, 036206 (2009)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    A.M. García-García, J. Wang, Phys. Rev. Lett. 94, 244102 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    T. Geisel, R. Ketzmerick, G. Petschel, Phys. Rev. Lett. 67, 3635 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    R. Artuso, F. Borgonovi, I. Guarneri, L. Rebuzzini, G. Casati, Phys. Rev. Lett. 69, 3302 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    J. Wang, J.B. Gong, Phys. Rev. A 77, 031405(R) (2008)ADSGoogle Scholar
  33. 33.
    W. Lawton, A.S. Mouritzen, J. Wang, J.B. Gong, J. Math. Phys. 50, 032103 (2009)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    J. Wang, A.S. Mouritzen, J.B. Gong, J. Mod. Opt. 56, 722 (2009)ADSMATHCrossRefGoogle Scholar
  35. 35.
    J. Wang, J.B. Gong, Phys. Rev. Lett. 102, 244102 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    J. Wang, J.B. Gong, Phys. Rev. E 81, 026204 (2010)ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    J.N. Bandyopadhyay, J. Wang, J.B. Gong, Phys. Rev. E 81, 066212 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    F.J. Dyson, J. Math. Phys. 3, 140 (1962)ADSMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    K.C. Hegewisch, S. Tomsovic, Europhys. Lett. 97, 34002 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    K. Źyczkowski, M. Kus, J. Phys. A 27, 4235 (1994)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    F. Mezzadri, Notices of the AMS 54, 592 (2007)MATHMathSciNetGoogle Scholar
  42. 42.
    Y.V. Fyodorov, A.D. Mirlin, Phys. Rev. B 51, 13403 (1995)ADSCrossRefGoogle Scholar
  43. 43.
    F. Evers, A.D. Mirlin, Phys. Rev. Lett. 84, 3690 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    A.D. Mirlin, F. Evers, Phys. Rev. B 62, 7920 (2000)ADSCrossRefGoogle Scholar
  45. 45.
    J. Martin, O. Giraud, B. George, Phys. Rev. E 77, 035201(R) (2008)ADSGoogle Scholar
  46. 46.
    J.N. Bandyopadhyay, unpublishedGoogle Scholar
  47. 47.
    E. Hamza, A. Joye, G. Stolz, Lett. Math. Phys. 75, 255 (2006)ADSMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    E. Hamza, A. Joye, G. Stolz, Math. Phys. Anal. Geom. 12, 381 (2009)MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    E. Cuevas, V. Gasparian, M. Ortunõ, Phys. Rev. Lett. 87, 056601 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    K. Yakubo, M. Ono, Phys. Rev. B 58, 9767 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    A. Rodriguez, L.J. Vasquez, K. Slevin, R.A. Römer, Phys. Rev. Lett. 105, 046403 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    D. Braun, G. Montambaux, M. Pascaud, Phys. Rev. Lett. 81, 1062 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    I. Varga, D. Braun, Phys. Rev. B 61, 11859(R) (2000)ADSCrossRefGoogle Scholar
  54. 54.
    E. Bogomolny, C. Schmit, Phys. Rev. Lett. 93, 254102 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Physics and Centre for Computational Science and EngineeringNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.NUS Graduate School for Integrative Sciences and EngineeringSingaporeRepublic of Singapore

Personalised recommendations