Advertisement

Soliton propagation and collision in a variable-coefficient coupled Korteweg-de Vries equation

Regular Article

Abstract

In this paper, a variable-coefficient coupled Korteweg-de Vries equation is presented and studied by Hirota bilinear method. The multi-soliton solutions expressed in the form of Pfaffians are obtained. We further analyze dynamic characters of these soliton solutions. The appearances of resonant soliton behaviors involving some novel soliton fusion and fission phenomena have been reported.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)ADSMATHCrossRefGoogle Scholar
  2. 2.
    M.J. Ablowitz, H. Segur, Soliton and the Inverse Scattering Transform (SIAM, Philadlphia, 1981)Google Scholar
  3. 3.
    R. Hirota, M. Ito, J. Phys. Soc. Jpn 52, 744 (1983)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    E. Medina, Lett. Math. Phys. 62, 91 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    S. Isojima, R. Willox, J. Satsuma, J. Phys. A 35, 6893 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    Z.J. Lian, S.Y. Lou, Nonlinear Anal. 63, e1167 (2005)MATHCrossRefGoogle Scholar
  7. 7.
    O.K. Pashaev, J.H. Lee, C. Rogers, J. Phys. A: Math. Theor. 41, 452001 (2008)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    R.S. Johnson, J. Fluid Mech. 54, 81 (1972)ADSMATHCrossRefGoogle Scholar
  9. 9.
    W.L. Chan, Y.K. Zheng, Lett. Math. Phys. 14, 293 (1987)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    Z.N. Zhu, J. Phys. A 28, 5673 (1995)MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    S.Y. Lou, H.Y. Ruan, Acta Physica Sinica 41, 182 (1992)MathSciNetGoogle Scholar
  12. 12.
    J.P. Gazeau, P. Winternitz, J. Math. Phys. 33, 4087 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    G.X. Huang, J. Szeftel, S.H. Zhu, Phys. Rev. A 65, 053605 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Frantzeskais, N.P. Proukakis, P.G. Kevrekidis, Phys. Rev. A 70, 015601 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    R.H.J. Grimshaw, E. Pelinovsky, T. Talipova, Surv. Geophys. 28, 273 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Y.T. Gao, B. Tian, Europhys. Lett. 77, 15001 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    G.A. Ei, R.H.J. Grimshaw, A.M. Kamchatnov, J. Fluid Mech. 585, 213 (2007)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Y. Zhang, H.Q. Zhao, L.Y. Ye, Y.N. Lv, Int. J. Mod. Phys. 25, 4615 (2011)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    P. Kersten, J. Krasil’shchik, Geometric Structures and Differential Equations-One Hundred Years after Sophus Lie, Adv. Stud. Pure, Math., edited by T. Morimoto, H. Sato, K. Yamaguchi (2002), pp. 151–171, Vol. 37Google Scholar
  20. 20.
    T. Tsuchida, T. Wolf, J. Phys. A 38, 7691 (2005)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    Y. Ohta, R. Hirota, J. Phys. Soc. Jpn 76, 024005 (2007)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    A.K. Kalkanli, S.Y. Sakovich, L. Yurdusen, J. Math. Phys. 44, 1703 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    D. Gross, A. Migdal, Phys. Rev. Lett. 64, 12 (1990)MathSciNetADSGoogle Scholar
  24. 24.
    R. Hirota, Y. Ohta, J. Phys. Soc. Jpn 60, 798 (1991)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    R. Hirota, The Direct Methods in Soliton Theory (Cambridge University Press, Cambridge, 2004)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Business Information Management SchoolShanghai Institute of Foreign TradeShanghaiP.R. China

Personalised recommendations