Model of the CO oxidation reaction on Au-covered Mo(112)

Regular Article

Abstract

The adsorption of O and CO and the CO oxidation reaction on the Au-covered Mo(112) surface have been studied by means of DFT calculations of binding and activation energies. As follows from previous studies [K. Fukutani et al., Appl. Surf. Sci. 256, (2010) 4796], adsorbed Au atoms create rods lying in the furrows of the Mo(112) surface. Due to a furrowed structure of the Mo(112), a p(1 × 1)Au monolayer does not cover the surface completely, and Mo atomic rows remain available for oxygen adsorption. It is found that oxygen adsorbs dissociatively on these Mo substrate atoms. In turn, CO molecules prefer adsorption sites on the Au rows atop Au atoms, so that CO and oxygen do not hinder each other from adsorption. The Au coating significantly decreases the binding energy of O on the Mo(112) surface. This feature is essential for the lowering of the barrier for CO oxidation, which is found to be as low as 0.19 eV. In presence of adsorbed O, the binding energy of CO is relatively small (0.29 eV), but increases to 0.64 eV when CO adsorbs on bilayer Au films. Hence, the p(1 × 4) and p(1 × 3) Au bilayer structures on Mo(112) surface are predicted to be efficient catalysts for CO oxidation.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    M. Haruta, N. Yamada, T. Kobayashi, S. Ijima, J. Catal. 115, 301 (1989) CrossRefGoogle Scholar
  2. 2.
    M. Haruta, Catal. Today 36, 153 (1997)CrossRefGoogle Scholar
  3. 3.
    M. Haruta, Gold Bull. 37, 27 (2004)CrossRefGoogle Scholar
  4. 4.
    R. Meyer, C. Lemire, K. Sh. Shaikhutdinov, H.J. Freund, Gold Bull. 37, 72 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Valden, X. Lai, D.W. Goodman, Science 281, 5383 (1998) CrossRefGoogle Scholar
  6. 6.
    D.C. Meier, D.W. Goodman, J. Am. Chem. Soc. 126, 1892 (2004) CrossRefGoogle Scholar
  7. 7.
    Z.-P. Liu, P. Hu, A. Alavi, J. Am. Chem. Soc. 124, 7499 (2002) CrossRefGoogle Scholar
  8. 8.
    L.M. Molina, B. Hammer, Phys. Rev. Lett. 90, 206102 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    Z.-P. Liu, S.J. Jenkins, D.A. King, Phys. Rev. Lett. 93, 156102 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    M.S. Chen, D.W. Goodman, Science 306, 252 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    Z.-P. Liu, Phys. Rev. B 73, 233410 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    Ya.B. Losovyj, I. Ketsman, N. Lozova, J. Scott, P.A. Dowben, I.N. Yakovkin, S.M. Zuber, Appl. Surf. Sci. 254, 4326 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    K. Fukutani, N. Lozova, S.M. Zuber, P.A. Dowben, P. Galiy, Ya.B. Losovyj, Appl. Surf. Sci. 256, 4796 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    K. Fukutani, Ya.B. Losovyj, N. Lozova, I.N. Yakovkin, N. Wu, P.A. Dowben, J. Electron. Spectros. Relat. Phenomena. 184, 318 (2011) CrossRefGoogle Scholar
  15. 15.
    X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan, Comput. Mater. Sci. 25, 478 (2002)CrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  17. 17.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) ADSCrossRefGoogle Scholar
  18. 18.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    I.N. Yakovkin, N.V. Petrova, Surf. Sci. 600, 2600 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    N.V. Petrova, I.N. Yakovkin, Phys. Rev. B 76, 205401 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    I.N. Yakovkin, N.V. Petrova, J. Chem. Phys. 130, 174714 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    J. Kołaczkiewicz, E. Bauer, Surf. Sci. 144, 477 (1984) ADSCrossRefGoogle Scholar
  23. 23.
    A. Kiejna, Phys. Rev. B 74, 235429 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    N.V. Petrova, I.N. Yakovkin, Surf. Rev. Lett. 16, 291 (2009)CrossRefGoogle Scholar
  25. 25.
    J. Kim, E. Samano, B.E. Koel, Surf. Sci. 600, 4622 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    A. Kiejna, R.M. Nieminen, J. Chem. Phys. 122, 044712 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    I.N. Yakovkin, Surf. Sci. 577, 229 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    T. McAvoy, J. Zhang, C. Waldfried, D. McIlroy, P. Dowben, O. Zeybek, T. Bertrams, S. Barrett, Eur. Phys. J. B 14, 747 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    T. Schroeder, J.B. Giorgi, A. Hammoudeh, M.B.N. Magg, H.-J. Freund, Phys. Rev. B 65, 115411 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    T. Schroeder, J. Aegenhagen, N. Magg, B. Immaraporn, H.-J. Freund, Surf. Sci. 552, 85 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Yu. G. Ptushinskii, Low Temp. Phys. 30, 1 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    V.D. Osovskii, D.Yu. Balakin, I.N. Zasimovich, E.V. Klimenko, N.V. Petrova, Yu.G. Ptushinskii, I.N. Yakovkin, Ukr. J. Phys. 54, 189 (2009)Google Scholar
  33. 33.
    I.N. Yakovkin, N.V. Petrova, Appl. Surf. Sci. 254, 4258 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    F. Mehmood, A. Kara, T.S. Rahman, C.R. Henry, Phys. Rev. B 79, 075422 (2009) ADSCrossRefGoogle Scholar
  35. 35.
    J. Kim, E. Samano, B.E. Koel, J. Phys. Chem. B 110, 17512 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Physics of National Academy of Sciences of UkraineKievUkraine

Personalised recommendations