Advertisement

The estimation of current and differential conductance of armchair single-wall carbon nanotubes via dissipative energy method

Regular Article
  • 174 Downloads

Abstract

We are going to apply dissipative energy method, considered as perturbation method, in order to investigate the effects of electron-optical phonon coupling on the electronic transport of armchair single wall carbon nanotubes. This method almost deals with the modeling of the behavior of electrons near ballistic regime. The results of calculations indicate that this model can be applied in estimating the current and the differential conductance of the armchair single-wall carbon nanotubes at low bias; however the perturbation method fails to reproduce the current and differential conductance at high voltages. Furthermore, this approach suggests a method that the observation of phonon energy modes involved in electron-phonon coupling becomes possible experimentally at low temperature.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    J. Nygard, D.H. Cobden, M. Bockrath, P.L. McEuen, P.E. Lindelof, Appl. Phys. A 69, 297 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    F. Lonard, The Physics of Carbon Nanotube Devices (William Andrew, Norwich, New York, 2009)Google Scholar
  3. 3.
    M. Lazzeri, S. Piscanec, F. Mauri, A.C. Ferrari, J. Robertson, Phys. Rev. Lett. 95, 236802 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    J. Jiang, R. Saito, Ge.G. Samsonidze, S.G. Chou, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 72, 235408 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    R.A. Jishi, M.S. Dresselhaus, G. Dresselhaus, Phys. Rev. B. 48, 11385 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    C. Auer, F. Schurrer, C. Ertler, Phys. Rev. B 74, 165409 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    S. Piscanec, M. Lazzeri, J. Robertson, A.C. Ferrari, F. Mauri, Phys. Rev. B 75, 035427 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    C.L. Kane, E.J. Mele, R.S. Lee, J.E. Fischer, P. Petit, H. Dai, A. Thess, R.E. Smalley, A.R.M. Verschueren, S.J. Tans, C. Dekker, Europhys. Lett. 41, 683 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    M. Lazzeri, F. Mauri, Phys. Rev. B 73, 165419 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    J. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Üstunel, S. Braig, T.A. Arias, P.W. Brouwer, P.L. McEuen, Nano Lett. 4, 517 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    A. Svizhenko, M.P. Anantram, Phys. Rev. B. 72, 085430 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Science 280, 1744 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Serhan Yamacli, Mutlu Avci, Phys. Lett. A 374, 297 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    S.O. Koswatta, S. Hasan, M.S. Lundstrom, M.P. Anantram, D.E. Nikonov, Appl. Phys. Lett. 89, 023125 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    P.A. Sundqvist, F.J. Garcia-Vidal, F. Flores, Phys. Rev. B 78, 205427 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Kuroda, J.-P. Leburton, Phys. Rev. B 80, 165417 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J. Dietel, H. Kleinert, Phys. Rev. B 82, 195437 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    J. Dietel, H. Kleinert, Phys. Rev. B 84, 121404 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Yao, C.L. Kane, C. Dekker, Phys. Rev. Lett. 84, 2941 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Kuroda, J.P. Leburton, Phys. Rev. B 80, 165417 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    J. Dietel, H. Kleinert, Phys. Rev. B 82, 195437 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    D.V. Pozdnyakov, V.O. Galenchik, F.F. Komarov, V.M. Borzdov, Physica E 33, 336 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    I.O. Kulik, A.N. Omelyanchouk, I.G. Tuluzov, Sov. J. Low. Temp. Phys. 14, 149 (1989)Google Scholar
  24. 24.
    S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    A. Namiranian, Yu.A. Kolesnichenko, A.N. Omelyanchouk, Phys. Rev. B 61, 16796 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    M. Bagheri, A. Namiranian, J. Phys.: Condens. Matter 19, 096207 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    L.E.F. Foa Torres, S. Roche, Appl. Phys. A 86, 283 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    J.-C. Charlier, X. Blase, S. Roche, Rev. Mod. Phys. 79, 677 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    V.N. Popov, P. Lambin, Phys. Rev. B 74, 075415 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes (Imperial College Press, London, 1998)Google Scholar
  31. 31.
    A.M. Duif, A.G.M. Jansen, P. Wyder, J. Phys.: condend. Matter 1, 3157 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, Phys. Lett. 92, 106804 (2004)CrossRefGoogle Scholar
  33. 33.
    Z. Yao, C.L. Kane, C. Dekker, Phys. Rev. Lett. 84, 2941 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Q. Liang, J. Dong, Nanotechnology 18, 365707 (2007)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsIran University of Science and TechnologyTehranIran
  2. 2.Department of Nano-Science, Institute for Studies in Theoretical Physics and Mathematics (IPM)Computational Physical Science LaboratoryTehranIran

Personalised recommendations