Advertisement

Metamorphosis and taxonomy of Andreev bound states

Regular Article

Abstract

We analyze the spatial and energy dependence of the local density of states in a SNS junction. We model our system as a one-dimensional tight-binding chain which we solve exactly by numerical diagonalization. We calculate the dependence of the Andreev bound states on position, phase difference, gate voltage, and coupling with the superconducting leads. Our results confirm the physics predicted by certain analytical approximations, but reveal a much richer set of phenomena beyond the grasp of these approximations, such as the metamorphosis of the discrete states of the normal link (the normal bound states) into Andreev bound states as the leads become superconducting.

Keywords

Solid State and Materials 

References

  1. 1.
    B.D. Josephson, Rev. Mod. Phys. 46, 251 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    P.-G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966)Google Scholar
  3. 3.
    A. Griffin, J. Demers, Phys. Rev. B 4, 2202 (1971)ADSCrossRefGoogle Scholar
  4. 4.
    E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    I. Kulik, Sov. Phys. JETP-USSR 30, 944 (1970)ADSGoogle Scholar
  6. 6.
    C.W.J. Beenakker, Transport Phenomena in Mesoscopic Systems, edited by H. Fukuyama, T. Ando (Springer, Berlin, 1992), Vol. 109, p. 235, Springer Series in Solid-State Science, arXiv:cond-mat/0406127Google Scholar
  7. 7.
    C.W.J. Beenakker, Transport Phenomena in Mesoscopic Systems, edited by H. Fukuyama, T. Ando (Springer, Berlin, 1992)Google Scholar
  8. 8.
    A.F. Andreev, Sov. Phys. JETP 19, 1228 (1964)Google Scholar
  9. 9.
    C.W.J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    M.L. Della Rocca et al., Phys. Rev. Lett. 99, 127005 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    R.S. Deacon et al., Phys. Rev. Lett. 104, 076805 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J.-D. Pillet et al., Nat. Phys. 11, (2010)Google Scholar
  13. 13.
    T. Dirks et al., Nat. Phys. 7, 386 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Furusaki, M. Tsukada, Phys. Rev. B 43, 10164 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    M. Hurd, G. Wendin, Phys. Rev. B 49, 15258 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    A. Richter, P. Baars, U. Merkt, Physica E 12, 911 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    I. Affleck, J.S. Caux, A.M. Zagoskin, Phys. Rev B 62, 1433 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    T. Meng, S. Florens, P. Simon, Phys. Rev. B 79, 224521 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    J. Caux, H. Saleur, F. Siano, Phys. Rev. Lett. 88, 106402 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    R. Fazio, F. Hekking, A. Odintsov, Phys. Rev. Lett. 74, 1843 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    E. Perfetto, G. Stefanucci, M. Cini, Phys. Rev. B 80, 205408 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    J. Bauer, A. Oguri, A.C. Hewson, J. Phys.: Condens. Matter 19, 486211 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Martin-Rodero, F.J. Garcia-Vidal, A. Levy Yeyati, Phys. Rev. B 72, 554 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    A. Levy Yeyati, A. Martin-Rodero, F.J. Garcia-Vidal, Phys. Rev. B 51, 3743 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    J.C. Cuevas, A. Martin-Rodero, A. Levy Yeyati, Phys. Rev. B 54, 7366 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    A. Nakayama, J. Appl. Phys. 91, 7119 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    A. Siber, Am. J. Phys. 74, 692 (2006)CrossRefGoogle Scholar
  28. 28.
    A.M. Black-Schaffer, S. Doniach, Phys. Rev. B 78, 024504 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    E. Vecino, A. Martin-Rodero, A. Levy Yeyati, Phys. Rev. B 68, 035105 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Zhu, Q.-F. Sun, T.-H. Lin, J. Phys.: Condens. Matter 13, 8783 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    I. Schneider, S. Eggert, Phys. Rev. Lett. 104, 036402 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    P. Kakashvili, H. Johannesson, S. Eggert, Phys. Rev. B 74, 085114 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    G. Buchs, D. Bercioux, P. Ruffieux, P. Groning, H. Grabert, O. Groning, Phys. Rev. Lett. 102, 245505 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    I. Schneider, A. Struck, M. Bortz, S. Eggert, Phys. Rev. Lett. 101, 206401 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    S.G. Lemay et al., Nature 412, 617 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    K. Grove-Rasmussen, H.I. Jorgensen, P.E. Lindelof, Physica E 40, 92 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    J.M. Byers, M.E. Flatte, D.J. Scalapino, Phys. Rev. Lett. 71, 3363 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    M.I. Salkola, A.V. Balatsky, D.J. Scalapino, Phys. Rev. Lett. 77, 1841 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    W. Ziegler et al., Phys. Rev. B 53, 8704 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    X.-L. Song, Z.-Y. Zhao, Y. Wang, Y.-M. Shi, J. of Shanghai Univ. 7, 361 (2003)CrossRefGoogle Scholar
  41. 41.
    W.G. van der Wiel et al., Rev. Mod. Phys. 75, 1 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de Physique des SolidesUniversité Paris-Sud, Bât. 510OrsayFrance
  2. 2.Institut de Physique Théorique, CEA/Saclay, CNRSGif-sur-YvetteFrance

Personalised recommendations