Advertisement

Coulomb correlations effects on localized charge relaxation in the coupled quantum dots

  • P. I. Arseyev
  • N. S. Maslova
  • V. N. Mantsevich
Regular Article

Abstract

We analyzed localized charge time evolution in the system of two interacting quantum dots (QD) (artificial molecule) coupled with the continuous spectrum states. We demonstrated that Coulomb interaction modifies relaxation rates and is responsible for non-monotonic time evolution of the localized charge. We suggested new mechanism of this non-monotonic charge time evolution connected with charge redistribution between different relaxation channels in each QD.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    M.A. Kastner, Rev. Mod. Phys. 4, 849 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    R. Ashoori, Nature 379, 413 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    T.H. Oosterkamp et al., Nature 395, 873 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    R.H. Blick et al., Phys. Rev. Lett. 81, 689 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    C.A. Stafford, N. Wingreen, Phys. Rev. Lett. 76, 1916 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    B. Hazelzet et al., Phys. Rev. B 63, 165313 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    E. Cota, R. Aguadado, G. Platero, Phys. Rev. Lett. 94, 107202 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    F.R. Waugh et al., Phys. Rev. Lett. 75, 705 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    R.H. Blick et al., Phys. Rev. B 53, 7899 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    C.A. Stafford, S. Das Sarma, Phys. Rev. Lett. 72, 3590 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    K.A. Matveev, L.I. Glazman, H.U. Baranger, Phys. Rev. B 54, 5637 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    C. Livermore et al., Science 274, 1332 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    S.J. Angus et al., Nano Lett. 7, 2051 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    K. Grove-Rasmussen et al., Nano Lett. 8, 1055 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    S. Moriyama et al., Nano Lett. 9, 2891 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    R. Landauer, Science 272, 1914 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    D. Loss, D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    K.Y. Tan et al., Nano Lett. 10, 11 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    L.C.L. Hollenberg et al., Phys. Rev. B 74, 045311 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    T. Hayashi et al., Phys. Rev. Lett. 91, 226804-1 (2003)ADSGoogle Scholar
  21. 21.
    I. Bar-Joseph, S.A. Gurvitz, Phys. Rev. B 44, 3332 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    S.A. Gurvitz, M.S. Marinov, Phys. Rev. A 40, 2166 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    S.A. Gurvitz, G. Kalbermann, Phys. Rev. Lett. 59, 262 (1987)ADSCrossRefGoogle Scholar
  24. 24.
    L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1964)MathSciNetGoogle Scholar
  25. 25.
    P.W. Anderson, Phys. Rev. 164, 352 (1967)ADSCrossRefGoogle Scholar
  26. 26.
    A. Kaminski, Yu.N. Nazarov, L.I. Glazman, Phys. Rev. B 62, 8154 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. I. Arseyev
    • 1
  • N. S. Maslova
    • 2
  • V. N. Mantsevich
    • 2
  1. 1.P.N. Lebedev Physical Institute of RASMoscowRussia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations