Skip to main content
Log in

Cotunneling mechanism of single-electron shuttling

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The problem of electron transport by means of a dumbbell shaped shuttle in strong Coulomb blockade regime is solved. The electrons may be shuttled only in the cotunneling regime during the time spans when both shoulders of the shuttle approach the metallic banks. The conventional Anderson-like tunneling model is generalized for this case and the tunneling conductance is calculated in the adiabatic regime of slow motion of the shuttle. Non-adiabatic corrections are briefly discussed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Thouless, Phys. Rev. B 27, 6083 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  2. L.Y. Gorelik, A. Isacsson, M.V. Voinova, B. Kasemo, R.I. Shekhter, M. Jonson, Phys. Rev. Lett. 80, 4526 (1998)

    Article  ADS  Google Scholar 

  3. H. Pothier, P. Lafarge, C. Urbina, D. Esteve, M.H. Devoret, Europhys. Lett. 17, 249 (1992)

    Article  ADS  Google Scholar 

  4. M. Switkes, C.M. Markus, K. Campman, A. Gossard, Science 283, 1905 (1999)

    Article  ADS  Google Scholar 

  5. S. Lotkov, S.A. Bogoslovsky, A.B. Zorin, J. Nimeyer, Appl. Phys. Lett. 78, 946 (2001)

    Article  ADS  Google Scholar 

  6. Y. Ono, Y. Takahashi, Appl. Phys. Lett. 82, 1221 (2003)

    Article  ADS  Google Scholar 

  7. S.K. Watson, R.M. Potok, C.M. Marcus, V. Umansky, Phys. Rev. Lett. 91, 258301 (2003)

    Article  ADS  Google Scholar 

  8. T. Aono, Phys. Rev. Lett. 93, 116601 (2004)

    Article  ADS  Google Scholar 

  9. R.I. Shekhter, L.Y. Gorelik, M. Jonson, Y.M. Galperin, V.M. Vinokur, J. Comput. Theor. Nanosci. 4, 860 (2007)

    Google Scholar 

  10. A. Erbe, C. Weiss, W. Zwerger, R.H. Blick, Phys. Rev. Lett. 87, 096106 (2001)

    Article  ADS  Google Scholar 

  11. D.V. Scheible, C. Weiss, J.P. Kotthaus, R. H. Blick, Phys. Rev. Lett. 93, 186801 (2004)

    Article  ADS  Google Scholar 

  12. D.V. Scheible, R.H. Blick, Appl. Phys. Lett. 84, 4632 (2004)

    Article  ADS  Google Scholar 

  13. B.J. LeRoy, S.G. Lemay, J. Kong, C. Dekker, Nature 432, 371 (2004)

    Article  ADS  Google Scholar 

  14. R.I. Shekhter, F. Santandrea, G. Sonne, L.Y. Gorelik, M. Jonson, Low Temp. Phys. 35, 662 (2009)

    Article  ADS  Google Scholar 

  15. D.R. Koenig, E.M. Weig, J.P. Kotthaus, Nature Nanotechnol. 3, 482 (2008)

    Article  ADS  Google Scholar 

  16. D.R. Koenig, Ph.D. thesis, Lüdwig-Maksimilian Universität, München, 2008

  17. P. Král, T. Seideman, J. Chem. Phys. 123, 184702 (2005)

    Article  ADS  Google Scholar 

  18. B. Wang, L. Vuković, P. Král, Phys. Rev. Lett. 101, 186808 (2008)

    Article  ADS  Google Scholar 

  19. A.E. Baber, H.L. Tierney, E.C.H. Sykes, ACS Nano 2, 2385 (2008)

    Article  Google Scholar 

  20. A.D. Jewell, H.L. Tierney, A.E. Baber, E.V. Iski, M.M. Laha, E.C.H. Sykes, J. Phys.: Condens. Mater. 22, 264006 (2010)

    Article  ADS  Google Scholar 

  21. H.L. Tierney, C.J. Murphy, A.D. Jewell, A.E. Baber, E.V. Iski, H.Y. Khodaverdian, A.F. McGuire, N. Klebanov, E.C.H. Sykes, Nature Nanotechnol. 6, 625 (2011)

    Article  ADS  Google Scholar 

  22. A. Credi, M. Semeraro, S. Silvi, M. Venturi, Antioxid. Redox Signal. 14, 1119 (2011)

    Article  Google Scholar 

  23. L.I. Glazman, M.E. Raikh, Pis’ma Zh. Eksp. Teor. Fiz. 67, 1276 (1988) [Sov. Phys. – JETP Lett. 47, 452 (1988)]

    Google Scholar 

  24. T.K. Ng, P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988)

    Article  ADS  Google Scholar 

  25. L. Kowenhoven, L. Glazman, Physics World 14, 33 (2001)

    Google Scholar 

  26. M.N. Kiselev, K. Kikoin, R.I. Shekhter, V. Vinokur, Phys. Rev. B 74, 233403 (2006)

    Article  ADS  Google Scholar 

  27. G. Cohen, V. Fleurov, K. Kikoin, Phys. Rev. B 79, 245307 (2009)

    Article  ADS  Google Scholar 

  28. K.A. Kikoin, V.N. Fleurov, Zh. Eksp. Teor. Fiz. 77, 1062 (1979) [Sov. Phys. – JETP 50, 535 (1979)]

    Google Scholar 

  29. Y. Goldin, Y. Avishai, Phys. Rev. B 61, 16750 (2000)

    Article  ADS  Google Scholar 

  30. A. Kaminski, Yu.V. Nazarov, L.I. Glazman, Phys. Rev. B 62, 8154 (2000)

    Article  ADS  Google Scholar 

  31. J.R. Schrieffer, P.A. Wolff, Phys. Rev. 149, 461 (1966)

    Article  ADS  Google Scholar 

  32. Y.B. Zeldovich, Us. Fiz. Nauk 110, 139 (1973) [Sov. Phys. Usp. 16, 427 (1973)]

    Article  Google Scholar 

  33. J.N. Shirley, Phys. Rev. B 138, 979 (1965)

    Article  ADS  Google Scholar 

  34. S.R. Barone, M.A. Narowich, F.J. Narowich, Phys. Rev. A 15, 1109 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  35. N. Tsuji, T. Oka, H. Aoki, Phys. Rev. B 78, 235124 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Fleurov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, G.Z., Fleurov, V. & Kikoin, K. Cotunneling mechanism of single-electron shuttling. Eur. Phys. J. B 85, 70 (2012). https://doi.org/10.1140/epjb/e2012-20923-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20923-7

Keywords

Navigation