Stationary soliton solutions for large adiabatic Holstein polaron in magnetic field in anisotropic solids

Regular Article
  • 116 Downloads

Abstract

Large adiabatic polarons in anisotropic crystals in the presence of constant magnetic field have been studied within the Holstein molecular crystal model in the continuum approximation. It was shown that magnetic field directed along the symmetry axis induces transverse confinement which may stabilize large polarons. They represent localized (soliton-like) nonlinear structure uniformly propagating along the symmetry axis and rotating around it in the same time. Such objects exist in 3D lattice provided that coupling constant and magnetic field do not exceed certain critical values. In contrast with pure 1D systems existence of large polarons is possible in a quite wider region of the values of coupling constant which may attain considerably higher values than in the pure 1D media. Furthermore, polaron effective mass, depending on the intensity of the applied magnetic field, may be considerably lighter than that of the the pure 1D polarons for the same values of coupling constant. This is the most significant difference with respect to pure 1D systems in the absence of magnetic field and may have substantial impact on polaron transport properties.

Keywords

Solid State and Materials 

References

  1. 1.
    L.D. Landau, S.I. Pekar, Zh. Eksp. Teor. Fiz. 18, 419 (1948)Google Scholar
  2. 2.
    N.N. Bogolubov, Ukr. Matem. Zh. 2, 3 (1950)Google Scholar
  3. 3.
    N.N. Bogolubov, S.V. Tyablikov, Zh. Eksp. Teor. Fiz. 19, 256 (1949)Google Scholar
  4. 4.
    H. Fröhlich, Adv. Phys. 3, 325 (1954)ADSCrossRefGoogle Scholar
  5. 5.
    S.I. Pekar, Research on Electron Theory in Crystals (Gostekhteorizdat, Moscow, 1951)Google Scholar
  6. 6.
    E.I. Rashba, in Excitons, edited by E.I. Rashba, M.D. Sturge (North-Holland, Amsterdam, 1982), p. ;543Google Scholar
  7. 7.
    E.I. Rashba, Opt. Spektr. 2, 88 (1958)Google Scholar
  8. 8.
    T. Holstein, Ann. Phys. 8, 326 (1959)ADSGoogle Scholar
  9. 9.
    T. Holstein, Ann. Phys. 8, 343 (1959)ADSCrossRefGoogle Scholar
  10. 10.
    J.T. Devreese, Encyclopedia of Applied Physics, edited by G.L. Trigg (VCH, Weinheim, 1996), Vol. 14, p. 383Google Scholar
  11. 11.
    J.T. Devreese, Rep. Prog. Phys. 72, 066501 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    D. Emin, T. Holstein, Phys. Rev. Lett. 36, 323 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    E. Young, P.B. Shaw, G. Whitfield, Phys. Rev. B 19, 1225 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    P.B. Shaw, E.W. Young, Phys. Rev. B 24, 714 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    E.G. Wilson, J. Phys. C Solid State Phys. 16, 1039 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    A.S. Davydov, Phys. Scr. 20, 387 (1979)ADSMATHCrossRefGoogle Scholar
  17. 17.
    A.S. Davydov, N.I. Kislukha, Phys. Stat. Sol. B 59, 465 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    D.K. Campbell, A.R. Bishop, K. Fesser, Phys. Rev. B 26, 6862 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    A.H. Castro Neto, A.O. Caldeira, Phys. Rev. B 46, 8858 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    A.H. Romero, D.W. Brown, K. Lindenberg, Phys. Rev. B 59, 13728 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    A.H. Romero, D.W. Brown, K. Lindenberg, Phys. Rev. B 60, 4618 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    A.H. Romero, D.W. Brown, K. Lindenberg, Phys. Rev. B 60, 14080 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    J. Bonča, S.A. Trugman, I. Batistić, Phys. Rev. B 60, 1633 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Li-Chung Ku, S.A. Trugman, J. Bonča, Phys. Rev. B 65, 174306 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    J.E. Hirsch, R.L. Sugar, D.J. Scalapino, R. Blankenbecler, Phys. Rev. B 26, 5033 (1982)ADSCrossRefGoogle Scholar
  26. 26.
    O.S. Barišić, S. Barišić, Eur. Phys. J. B 64, 1 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    O.S. Barišić, Europhys. Lett. 77, 57004 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    A. Alvermann, H. Fehske, S.A. Trugman, Phys. Rev. B 78, 165106 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    A. Alvermann, H. Fehske, S.A. Trugman, Phys. Rev. B 81, 165113 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    P. Hamm, G.P. Tsironis, Phys. Rev. B 78, 092301 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    D. Hennig, Phys. Rev. B 65, 174302 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    E.M. Conwell, S.V. Rakhmanova, Proc. Natl. Acad. Sci. USA 97, 4556 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    E.M. Conwell, Proc. Natl. Acad. Sci. USA 102, 8795 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    V.D. Lakhno, N.S. Fialko, Eur. Phys. J. B 43, 279 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    A.J. Heeger, S. Kivelson, J.R. Schriefer, Rev. Mod. Phys. 60, 781 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    S.A. Brazovskii, JETP Lett. 28, 606 (1978)ADSGoogle Scholar
  37. 37.
    B. Pertzch, U. Rössler, Solid State Commun. 37, 931 (1981)ADSCrossRefGoogle Scholar
  38. 38.
    D. Emin, Phys. Rev. B 33, 3973 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    D. Ljuić, Z. Ivić, Phys. Rev. B 76, 052302 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    M.J. Rice, Phys. Rev. Lett. 37, 36 (1976)ADSCrossRefGoogle Scholar
  41. 41.
    M.J. Rice, N.O. Lipari, Phys. Rev. Lett. 38, 437 (1977)ADSCrossRefGoogle Scholar
  42. 42.
    M.J. Rice, N.O. Lipari, S. Strässler, Phys. Rev. Lett. 39, 1359 (1977)ADSCrossRefGoogle Scholar
  43. 43.
    M. Porsch, Phys. Status Solidi 41, 151 (1970)MathSciNetCrossRefGoogle Scholar
  44. 44.
    G. Whitfield, R. Parker, M. Rona, Phys. Rev. B 13, 2132 (1976)ADSCrossRefGoogle Scholar
  45. 45.
    D.M. Larsen, Phys. Rev. 135, A419 (1964)ADSCrossRefGoogle Scholar
  46. 46.
    D.M. Larsen, Phys. Rev. B 32, 2657 (1985)ADSCrossRefGoogle Scholar
  47. 47.
    D.M. Larsen, Phys. Rev. B 33, 799 (1986)ADSCrossRefGoogle Scholar
  48. 48.
    H. Kato, F.M. Peeters, Phys. Rev. 59, 14342 (1999)CrossRefGoogle Scholar
  49. 49.
    V.N. Gladilin, A.A. Klyukanov, Russian Phys. J. 26, 543 (1983)Google Scholar
  50. 50.
    L.S. Kukushkin, Pisma Zh. Eksp. Teor. Fiz. 7, 251 (1968)Google Scholar
  51. 51.
    L.S. Brizhik, Theor. Math. Phys. 83, 578 (1990)MathSciNetCrossRefGoogle Scholar
  52. 52.
    L. Friedman, Phys. Rev. 131, 2445 (1963)ADSCrossRefGoogle Scholar
  53. 53.
    T. Holstein, L. Friedman, Phys. Rev. 165, 1019 (1963)ADSCrossRefGoogle Scholar
  54. 54.
    D. Emin, Phys. Rev. Lett. 28, 604 (1972)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Toyozawa, Progr. Theor. Phys. 26, 29 (1961)MathSciNetADSMATHCrossRefGoogle Scholar
  56. 56.
    M. Hohenadler, W. von ;der Linden, in Polarons in Advanced Materials, edited by A.S. Alexandrov (Springer Series in Materials Science, 2007), Vol. ;103, pp. ;463-502Google Scholar
  57. 57.
    I.V. Simenog, Theor. Math. Phys. 30, 263 (1977)MathSciNetCrossRefGoogle Scholar
  58. 58.
    A.G. Litvak, A.M. Sergeev, JETP Lett. 27, 517 (1978)ADSGoogle Scholar
  59. 59.
    M.G. Vakhitov, A.A. Kolokolov, Izv. Vyssh. Uch. Zav. Radiofizika 16, 1020 (1973) [English Transl. Radiophys. Quant. Electron 16, 783 (1973)]Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.“Vinča” Institute of Nuclear Sciences, Laboratory for Theoretical and Condensed matter physics-020University of BelgradeBelgradeSerbia
  2. 2.Department of Physics, Faculty of ScienceUniversity of Novi SadNovi SadSerbia

Personalised recommendations