Fractal growth in the presence of a surface force field

Regular Article


We numerically simulate the dynamics of atomic clusters aggregation deposited on a surface interacting with the growing island. We make use of the well-known DLA model but replace the underlying diffusion equation by the Smoluchowski equation which results in a drifted DLA model and anisotropic jump probabilities. The shape of the structures resulting from their aggregation-limited random walk is affected by the presence of a Laplacian potential due to, for instance, the surface stress field. We characterize the morphologies we obtain by their Hausdorff fractal dimension as well as the so-called external fractal dimension. We compare our results to previously published experimental results for antimony and silver clusters deposited onto graphite surface.


Statistical and Nonlinear Physics 


  1. 1.
    R. Tokita, T. Katoh, Y. Maeda, J. Wakita, M. Sano, T. Matsuyama, M. Matsushita, J. Phys. Soc. Jpn 78, 074005 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    L. Niemeyer, L. Pietronero, H.J. Wiesmann, Phys. Rev. Lett. 52, 1033 (1984)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    D. Bensimon, L.P. Kadanoff, S. Liang, B.I. Shraiman, C. Tang, Rev. Mod. Phys. 58, 977 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    F. Ciuchi, L. Sorriso-Valvo, A. Mazzulla, J.M. Redondo, Eur. Phys. J. E 29, 139 (2009)CrossRefGoogle Scholar
  5. 5.
    T.R. NíMhíocháin, G. Hinds, A. Martin, Z.Y.E. Chang, A. Lai, L. Costiner, J.M.D. Coey, Electrochim. Acta 49, 4813 (2004)CrossRefGoogle Scholar
  6. 6.
    R.Q. Hwang, J. Schröder, C. Günther, R.J. Behm, Phys. Rev. Lett. 67, 3279 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    A.R. Howells, L. Hung, G.S. Chottiner, D.A. Scherson, Solid State Ion. 150, 53 (2002)CrossRefGoogle Scholar
  8. 8.
    B. Yoon et al., Surf. Sci. 443, 76 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, B. Cabaud, Phys. Rev. Lett. 74, 4694 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    L. Bardotti, P. Jensen, A. Hoareau, M. Treilleux, B. Cabaud, A. Perez, F. Cadete Santos Aires, Surf. Sci. 367, 276 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    C. Brechignac et al., Surf. Sci. 518, 192 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    P. Jensen, Rev. Mod. Phys. 71, 1695 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    B.B. Mandelbrot, B. Kol, A. Aharony, Phys. Rev. Lett. 88, 055501 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    M.T. Batchelor, C.I. Henry, A.P. Roberts, Phys. Rev. E 51, 807 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    B. Schraiman, D. Bensimon, Phys. Rev. A 30, R2840 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    T.A. Witten, L.M. Sander, Phys. Rev. Lett. 47, 1400 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    L.P. Kadanoff, J. Stat. Phys. 39, 267 (1985)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    M.B. Hastings, L.S. Levitov, Physica D 116, 244 (1998)ADSMATHCrossRefGoogle Scholar
  19. 19.
    M.G. Stepanov, L.S. Levitov, Phys. Rev. E 63, 061102 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    F. Barra, B. Davidovitch, I. Procaccia, Phys. Rev. E 65, 046144 (2002)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    T.A. Witten, P. Meakin, Phys. Rev. B 28, 5632 (1983)ADSCrossRefGoogle Scholar
  22. 22.
    R. Jullien, M. Kolb, R. Botet, J. Phys. 45, 395 (1984)CrossRefGoogle Scholar
  23. 23.
    T.R. NíMhíocháin, J.M.D. Coey, Phys. Rev. E 69, 061404 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    S.C. Ferreira, S.G. Alves, A. Faissal Brito, J.G. Moreira, Phys. Rev. E 71, 051402 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    P. Ramanlal, L.M. Sander, Phys. Rev. Lett. 54, 1828 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    P. Meakin, R.C. Ball, P. Ramanlal, L.M. Sander, Phys. Rev. A 35, 5233 (1987)ADSCrossRefGoogle Scholar
  27. 27.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. (Butterworth-Heinemann Ltd, 1984)Google Scholar
  28. 28.
    T. Aukrust, M.A. Novotny, D.A. Browne, K. Kaski, Phys. Rev. A 39, 2587 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    A.Yu. Menshutin, L.N. Shchur, V.M. Vinokur, Phys. Rev. E 75, 010401R (2007)ADSCrossRefGoogle Scholar
  30. 30.
    A. Lando, N. Kébaïli, P. Cahuzac, A. Masson, C. Bréchignac, Phys. Rev. Lett. 93, 133402 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    A.Yu. Menshutin, L.N. Shchur, Phys. Rev. E 73, 011407 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    W.G. Hanan, D.M. Heffernan, Chaos Solitons Fractals 12, 193 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    P. Garik, Phys Rev. A 32, 1276 (1985)MathSciNetADSGoogle Scholar
  34. 34.
    M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (W.H. Freeman, New York, 1991), pp. 41–42Google Scholar
  35. 35.
    A.Yu. Menshutin, L.N. Shchur, Comput. Phys. Commun. 182, 1819 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire Aimé Cotton, Bât. 505CNRS II, Campus d’OrsayOrsay CedexFrance

Personalised recommendations