Skip to main content
Log in

Composition-controlled exchange bias training effect in FeCr/IrMn bilayers

  • Regular Article
  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

For FeCr/IrMn bilayers, the exchange bias training effect and the magnetization reversal mechanism are correlated to each other and depend on the composition of the ferromagnetic layer. For high Fe contents, the asymmetric magnetization reversal is observed. During the training effect, both exchange field and coercivity decrease monotonically, suggesting a type I training effect. For low Fe contents, the domain wall depinning takes place for the two hysteresis loop branches. Only exchange field diminution happens in the training effect. The coercivity almost does not change in the process, corresponding to a type II training effect. It is suggested that the motion of antiferromagnetic spins is modified by the magnetization reversal mechanism in the ferromagnetic layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956)

    Article  ADS  Google Scholar 

  2. see, e.g., J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)

    Article  ADS  Google Scholar 

  3. A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552 (1999)

    Article  ADS  Google Scholar 

  4. D. Paccard et al., Phys. Status Solidi 16, 301 (1966)

    Article  Google Scholar 

  5. H. Xi et al., Phys. Rev. B 64, 184416 (2001)

    Article  ADS  Google Scholar 

  6. K. Zhang et al., J. Appl. Phys. 89, 6910 (2001)

    Article  ADS  Google Scholar 

  7. K. Zhang et al., J. Appl. Phys. 91, 6902 (2002)

    Article  ADS  Google Scholar 

  8. A. Hochstrat et al., Phys. Rev. B 66, 092409 (2002)

    Article  ADS  Google Scholar 

  9. Ch. Binek, Phys. Rev. B 70, 014421 (2004)

    Article  ADS  Google Scholar 

  10. S. Brems et al., Phys. Rev. Lett. 95, 157202 (2005)

    Article  ADS  Google Scholar 

  11. S. Brems et al., Phys. Rev. Lett. 99, 067201 (2007)

    Article  ADS  Google Scholar 

  12. Ch. Binek et al., Phys. Rev. Lett 96, 067201 (2006)

    Article  ADS  Google Scholar 

  13. M.S. Lund, C. Leighton, Phys. Rev. B. 76, 104433 (2007)

    Article  ADS  Google Scholar 

  14. S. Polisetty et al., Phys. Rev B 76, 184423 (2007)

    Article  ADS  Google Scholar 

  15. T. Hauet et al., Phys. Rev B 76, 144423 (2007)

    Article  ADS  Google Scholar 

  16. A. Paul et al., Phys. Rev B 76, 184424 (2007)

    Article  ADS  Google Scholar 

  17. M.K. Chan et al., Phys. Rev B 77, 014420 (2008)

    Article  ADS  Google Scholar 

  18. M. Fecioru-Morariu et al., Phys. Rev B 77, 054441 (2008)

    Article  ADS  Google Scholar 

  19. Z. Shi et al., Appl. Phys. Lett. 93, 222504 (2008)

    Article  ADS  Google Scholar 

  20. S. Polisetty et al., Phys. Rev. B 78, 184426 (2008)

    Article  ADS  Google Scholar 

  21. J. Ventura et al., Phys. Rev. B 77, 184404 (2008)

    Article  ADS  Google Scholar 

  22. A.G. Biternas et al., Phys. Rev. B 80, 134419 (2009)

    Article  ADS  Google Scholar 

  23. P. Biagioni et al., Phys. Rev. B 80, 134401 (2009)

    Article  ADS  Google Scholar 

  24. T. Suzuki et al., IEEE Trans. Magn. 28, 2754 (1992)

    Article  ADS  Google Scholar 

  25. A. Fnidikia et al., Physica B 363, 271 (2005)

    Article  ADS  Google Scholar 

  26. K. Tarafder et al., J. Phys.: Condens. Matter 20, 445201 (2008)

    Article  ADS  Google Scholar 

  27. D.V. Ratnam, W.R. Buessem, J. Appl. Phys. 43, 1291 (1972)

    Article  ADS  Google Scholar 

  28. S.M. Zhou, C.L. Chien, Phys. Rev. B 63, 104406 (2001)

    Article  ADS  Google Scholar 

  29. R. Shan et al., Phys. Rev. B 71, 064402 (2005)

    Article  ADS  Google Scholar 

  30. C. Papusoi Jr., J. Magn. Magn. Mater. 195, 708 (1999)

    Article  ADS  Google Scholar 

  31. L. Sun et al., Phys. Rev. B 71, 012417 (2005)

    Article  ADS  Google Scholar 

  32. T. Ambrose et al., Phys. Rev. B 56, 83 (1997)

    Article  ADS  Google Scholar 

  33. B. Beckmann et al., Phys. Rev. Lett. 91, 187201 (2003)

    Article  ADS  Google Scholar 

  34. A. Hoffmann, Phys. Rev. Lett. 93, 097203 (2004)

    Article  ADS  Google Scholar 

  35. Z. Shi et al., Appl. Phys. Lett. 98, 122507 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z., Qiu, X.P., Zhu, J.T. et al. Composition-controlled exchange bias training effect in FeCr/IrMn bilayers. Eur. Phys. J. B 84, 173–176 (2011). https://doi.org/10.1140/epjb/e2011-20808-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20808-3

Keywords

Navigation