The European Physical Journal B

, Volume 84, Issue 2, pp 173–176 | Cite as

Composition-controlled exchange bias training effect in FeCr/IrMn bilayers

  • Z. Shi
  • X. P. Qiu
  • J. T. Zhu
  • R. W. Chantrell
  • S. Mangin
  • S. M. Zhou
Regular Article Solid State and Materials

Abstract

For FeCr/IrMn bilayers, the exchange bias training effect and the magnetization reversal mechanism are correlated to each other and depend on the composition of the ferromagnetic layer. For high Fe contents, the asymmetric magnetization reversal is observed. During the training effect, both exchange field and coercivity decrease monotonically, suggesting a type I training effect. For low Fe contents, the domain wall depinning takes place for the two hysteresis loop branches. Only exchange field diminution happens in the training effect. The coercivity almost does not change in the process, corresponding to a type II training effect. It is suggested that the motion of antiferromagnetic spins is modified by the magnetization reversal mechanism in the ferromagnetic layer.

Keywords

FeCr Magnetization Reversal Exchange Bias Ferromagnetic Layer FeCr Alloy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956)CrossRefADSGoogle Scholar
  2. 2.
    see, e.g., J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999)CrossRefADSGoogle Scholar
  3. 3.
    A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552 (1999)CrossRefADSGoogle Scholar
  4. 4.
    D. Paccard et al., Phys. Status Solidi 16, 301 (1966)CrossRefGoogle Scholar
  5. 5.
    H. Xi et al., Phys. Rev. B 64, 184416 (2001)CrossRefADSGoogle Scholar
  6. 6.
    K. Zhang et al., J. Appl. Phys. 89, 6910 (2001)CrossRefADSGoogle Scholar
  7. 7.
    K. Zhang et al., J. Appl. Phys. 91, 6902 (2002)CrossRefADSGoogle Scholar
  8. 8.
    A. Hochstrat et al., Phys. Rev. B 66, 092409 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Ch. Binek, Phys. Rev. B 70, 014421 (2004)CrossRefADSGoogle Scholar
  10. 10.
    S. Brems et al., Phys. Rev. Lett. 95, 157202 (2005)CrossRefADSGoogle Scholar
  11. 11.
    S. Brems et al., Phys. Rev. Lett. 99, 067201 (2007)CrossRefADSGoogle Scholar
  12. 12.
    Ch. Binek et al., Phys. Rev. Lett 96, 067201 (2006)CrossRefADSGoogle Scholar
  13. 13.
    M.S. Lund, C. Leighton, Phys. Rev. B. 76, 104433 (2007)CrossRefADSGoogle Scholar
  14. 14.
    S. Polisetty et al., Phys. Rev B 76, 184423 (2007)CrossRefADSGoogle Scholar
  15. 15.
    T. Hauet et al., Phys. Rev B 76, 144423 (2007)CrossRefADSGoogle Scholar
  16. 16.
    A. Paul et al., Phys. Rev B 76, 184424 (2007)CrossRefADSGoogle Scholar
  17. 17.
    M.K. Chan et al., Phys. Rev B 77, 014420 (2008)CrossRefADSGoogle Scholar
  18. 18.
    M. Fecioru-Morariu et al., Phys. Rev B 77, 054441 (2008)CrossRefADSGoogle Scholar
  19. 19.
    Z. Shi et al., Appl. Phys. Lett. 93, 222504 (2008)CrossRefADSGoogle Scholar
  20. 20.
    S. Polisetty et al., Phys. Rev. B 78, 184426 (2008)CrossRefADSGoogle Scholar
  21. 21.
    J. Ventura et al., Phys. Rev. B 77, 184404 (2008)CrossRefADSGoogle Scholar
  22. 22.
    A.G. Biternas et al., Phys. Rev. B 80, 134419 (2009)CrossRefADSGoogle Scholar
  23. 23.
    P. Biagioni et al., Phys. Rev. B 80, 134401 (2009)CrossRefADSGoogle Scholar
  24. 24.
    T. Suzuki et al., IEEE Trans. Magn. 28, 2754 (1992)CrossRefADSGoogle Scholar
  25. 25.
    A. Fnidikia et al., Physica B 363, 271 (2005)CrossRefADSGoogle Scholar
  26. 26.
    K. Tarafder et al., J. Phys.: Condens. Matter 20, 445201 (2008)CrossRefADSGoogle Scholar
  27. 27.
    D.V. Ratnam, W.R. Buessem, J. Appl. Phys. 43, 1291 (1972)CrossRefADSGoogle Scholar
  28. 28.
    S.M. Zhou, C.L. Chien, Phys. Rev. B 63, 104406 (2001)CrossRefADSGoogle Scholar
  29. 29.
    R. Shan et al., Phys. Rev. B 71, 064402 (2005)CrossRefADSGoogle Scholar
  30. 30.
    C. Papusoi Jr., J. Magn. Magn. Mater. 195, 708 (1999)CrossRefADSGoogle Scholar
  31. 31.
    L. Sun et al., Phys. Rev. B 71, 012417 (2005)CrossRefADSGoogle Scholar
  32. 32.
    T. Ambrose et al., Phys. Rev. B 56, 83 (1997)CrossRefADSGoogle Scholar
  33. 33.
    B. Beckmann et al., Phys. Rev. Lett. 91, 187201 (2003)CrossRefADSGoogle Scholar
  34. 34.
    A. Hoffmann, Phys. Rev. Lett. 93, 097203 (2004)CrossRefADSGoogle Scholar
  35. 35.
    Z. Shi et al., Appl. Phys. Lett. 98, 122507 (2011)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Z. Shi
    • 1
  • X. P. Qiu
    • 2
  • J. T. Zhu
    • 1
  • R. W. Chantrell
    • 3
  • S. Mangin
    • 4
  • S. M. Zhou
    • 1
  1. 1.Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & Physics DepartmentTongji UniversityShanghaiP.R. China
  2. 2.Surface Physics Laboratory (National Key Laboratory) and Department of PhysicsFudan UniversityShanghaiP.R. China
  3. 3.Physics DepartmentThe University of YorkYorkUK
  4. 4.Inst Jean LamourNancy UniversityVandœuvre-lès-NancyFrance

Personalised recommendations