The European Physical Journal B

, Volume 84, Issue 1, pp 109–113 | Cite as

Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles

Simulation of phase transitions in NiTi nanoparticles
Regular Article Computational Methods


The reverse martensitic (“austenitic”) transformation upon heating of equiatomic nickel-titanium nanoparticles with diameters between 4 and 17 nm is analyzed by means of molecular-dynamics simulations with a semi-empirical model potential. After constructing an appropriate order parameter to distinguish locally between the monoclinic B19′ at low and the cubic B2 structure at high temperatures, the process of the phase transition is visualized. This shows a heterogeneous nucleation of austenite at the surface of the particles, which propagates to the interior by plane sliding, explaining a difference in austenite start and end temperatures. Their absolute values and dependence on particle diameter are obtained and related to calculations of the surface induced size dependence of the difference in free energy between austenite and martensite.


Austenite Martensite Neighbor Distance Martensitic Phase Transition Free Surface Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shape Memory Materials, edited by K. Otsuka, C.M. Wayman (Cambridge University Press, 1998)Google Scholar
  2. 2.
    T. Waitz, K. Tsuchiya, T. Antretter, F.D. Fischer, MRS Bulletin 34, 814 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Waitz, D. Spisak, J. Hafner, H.P. Karnthaler, Europhys. Lett. 71, 98 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    T. Waitz, W. Pranger, T. Antretter, F.D. Fischer, H.P. Karnthaler, Mater. Sci. Eng. A 481, 479 (2008)CrossRefGoogle Scholar
  5. 5.
    T. Waitz, T. Antretter, F.D. Fischer, H.D. Karnthaler, Mater. Sci. Technol. 24, 934 (2008)CrossRefGoogle Scholar
  6. 6.
    H.B. Liu, G. Canizal, P.S. Schabes-Retchkiman, J.A. Ascencio, J. Phys. Chem. B 110, 12333 (2006)CrossRefGoogle Scholar
  7. 7.
    A.T. Castro, E.L. Cuellar, U.O. Mendez, M.J. Yacaman, Mater. Sci. Eng. A 481, 476 (2008)CrossRefGoogle Scholar
  8. 8.
    Y. Fu, C. Shearwood, Scr. Mater. 50, 319 (2004)CrossRefGoogle Scholar
  9. 9.
    D. Wan, K. Komvopoulos, J. Mater. Res. 20, 1606 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Y.Q. Fu, S. Zhang, M.J. Wu, W.M. Huang, H.J. Du, J.K. Luo, A.J. Flewitt, W.I. Milne, Thin Solid Films 515, 80 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    J. Ye, R.K. Mishra, A.R. Pelton, A.M. Minor, Acta Mater. 58, 490 (2010)CrossRefGoogle Scholar
  12. 12.
    K. Kolluri, M.R. Gungor, D. Maroudas, Phys. Rev. B 78, 195408 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    H.S. Park, Nano Lett. 6, 958 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M. Gruenwald, C. Dellago, Nano Lett. 9, 2099 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    K. Kadau, M. Gruner, P. Entel, M. Kreth, Phase Transition. 76, 355 (2003)CrossRefGoogle Scholar
  16. 16.
    L. Sandoval, H.M. Urbassek, Nano Lett. 9, 2290 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    W.S. Lai, B.X. Liu, J. Phys.: Condens. Matter 12, L53 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    D. Mutter, P. Nielaba, Phys. Rev. B 82, 224201 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, S. Turenne, I.Y. Khmelevskaya, I.B. Trubitsyna, Acta Mater. 52, 4479 (2004)CrossRefGoogle Scholar
  21. 21.
    N. Hatcher, O.Y. Kontsevoi, A.J. Freeman, Phys. Rev. B 80, 144203 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    X. Huang, G.J. Ackland, K.M. Rabe, Nature Mater. 2, 307 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    S. Nosé, J. Chem. Phys. 81, 511 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    K. Kadau, P. Entel, Phase Transition. 75, 59 (2002)CrossRefGoogle Scholar
  26. 26.
    R. Meyer, P. Entel, Phys. Rev. B 57, 5140 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    S.-N. Luo, T.J. Ahrens, T. Cagin, A. Strachan, W.A. Goddard III, D.C. Swift, Phys. Rev. B 68, 134206 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    S.-N. Luo, T.J. Ahrens, Appl. Phys. Lett. 82, 1836 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    W. Qin, Z.H. Chen, J. Alloys Compd. 322, 286 (2001)CrossRefGoogle Scholar
  30. 30.
    Q. Meng, N. Zhou, Y. Rong, S. Chen, T.Y. Hsu, Z. Xu, Acta Mater. 50, 4563 (2002)CrossRefGoogle Scholar
  31. 31.
    J. Khalil-Allafi, B. Amin-Ahmadi, J. Alloys Compd. 487, 363 (2009)CrossRefGoogle Scholar
  32. 32.
    C. Wen, B. Huang, Z. Chen, Y. Rong, Mat. Sci. Eng. A 438-440, 420 (2006)CrossRefGoogle Scholar
  33. 33.
    P. Pawlow, Z. Phys. Chem. Stoechiom. Verwandtschafts. 65, 545 (1909)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of KonstanzKonstanzGermany

Personalised recommendations