Skip to main content
Log in

Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles

Simulation of phase transitions in NiTi nanoparticles

  • Regular Article
  • Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The reverse martensitic (“austenitic”) transformation upon heating of equiatomic nickel-titanium nanoparticles with diameters between 4 and 17 nm is analyzed by means of molecular-dynamics simulations with a semi-empirical model potential. After constructing an appropriate order parameter to distinguish locally between the monoclinic B19′ at low and the cubic B2 structure at high temperatures, the process of the phase transition is visualized. This shows a heterogeneous nucleation of austenite at the surface of the particles, which propagates to the interior by plane sliding, explaining a difference in austenite start and end temperatures. Their absolute values and dependence on particle diameter are obtained and related to calculations of the surface induced size dependence of the difference in free energy between austenite and martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shape Memory Materials, edited by K. Otsuka, C.M. Wayman (Cambridge University Press, 1998)

  2. T. Waitz, K. Tsuchiya, T. Antretter, F.D. Fischer, MRS Bulletin 34, 814 (2009)

    Article  Google Scholar 

  3. T. Waitz, D. Spisak, J. Hafner, H.P. Karnthaler, Europhys. Lett. 71, 98 (2005)

    Article  ADS  Google Scholar 

  4. T. Waitz, W. Pranger, T. Antretter, F.D. Fischer, H.P. Karnthaler, Mater. Sci. Eng. A 481, 479 (2008)

    Article  Google Scholar 

  5. T. Waitz, T. Antretter, F.D. Fischer, H.D. Karnthaler, Mater. Sci. Technol. 24, 934 (2008)

    Article  Google Scholar 

  6. H.B. Liu, G. Canizal, P.S. Schabes-Retchkiman, J.A. Ascencio, J. Phys. Chem. B 110, 12333 (2006)

    Article  Google Scholar 

  7. A.T. Castro, E.L. Cuellar, U.O. Mendez, M.J. Yacaman, Mater. Sci. Eng. A 481, 476 (2008)

    Article  Google Scholar 

  8. Y. Fu, C. Shearwood, Scr. Mater. 50, 319 (2004)

    Article  Google Scholar 

  9. D. Wan, K. Komvopoulos, J. Mater. Res. 20, 1606 (2005)

    Article  ADS  Google Scholar 

  10. Y.Q. Fu, S. Zhang, M.J. Wu, W.M. Huang, H.J. Du, J.K. Luo, A.J. Flewitt, W.I. Milne, Thin Solid Films 515, 80 (2006)

    Article  ADS  Google Scholar 

  11. J. Ye, R.K. Mishra, A.R. Pelton, A.M. Minor, Acta Mater. 58, 490 (2010)

    Article  Google Scholar 

  12. K. Kolluri, M.R. Gungor, D. Maroudas, Phys. Rev. B 78, 195408 (2008)

    Article  ADS  Google Scholar 

  13. H.S. Park, Nano Lett. 6, 958 (2006)

    Article  ADS  Google Scholar 

  14. M. Gruenwald, C. Dellago, Nano Lett. 9, 2099 (2009)

    Article  ADS  Google Scholar 

  15. K. Kadau, M. Gruner, P. Entel, M. Kreth, Phase Transition. 76, 355 (2003)

    Article  Google Scholar 

  16. L. Sandoval, H.M. Urbassek, Nano Lett. 9, 2290 (2009)

    Article  ADS  Google Scholar 

  17. M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984)

    Article  ADS  Google Scholar 

  18. W.S. Lai, B.X. Liu, J. Phys.: Condens. Matter 12, L53 (2000)

    Article  ADS  Google Scholar 

  19. D. Mutter, P. Nielaba, Phys. Rev. B 82, 224201 (2010)

    Article  ADS  Google Scholar 

  20. S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, S. Turenne, I.Y. Khmelevskaya, I.B. Trubitsyna, Acta Mater. 52, 4479 (2004)

    Article  Google Scholar 

  21. N. Hatcher, O.Y. Kontsevoi, A.J. Freeman, Phys. Rev. B 80, 144203 (2009)

    Article  ADS  Google Scholar 

  22. X. Huang, G.J. Ackland, K.M. Rabe, Nature Mater. 2, 307 (2003)

    Article  ADS  Google Scholar 

  23. W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)

    Article  ADS  Google Scholar 

  24. S. Nosé, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  25. K. Kadau, P. Entel, Phase Transition. 75, 59 (2002)

    Article  Google Scholar 

  26. R. Meyer, P. Entel, Phys. Rev. B 57, 5140 (1998)

    Article  ADS  Google Scholar 

  27. S.-N. Luo, T.J. Ahrens, T. Cagin, A. Strachan, W.A. Goddard III, D.C. Swift, Phys. Rev. B 68, 134206 (2003)

    Article  ADS  Google Scholar 

  28. S.-N. Luo, T.J. Ahrens, Appl. Phys. Lett. 82, 1836 (2003)

    Article  ADS  Google Scholar 

  29. W. Qin, Z.H. Chen, J. Alloys Compd. 322, 286 (2001)

    Article  Google Scholar 

  30. Q. Meng, N. Zhou, Y. Rong, S. Chen, T.Y. Hsu, Z. Xu, Acta Mater. 50, 4563 (2002)

    Article  Google Scholar 

  31. J. Khalil-Allafi, B. Amin-Ahmadi, J. Alloys Compd. 487, 363 (2009)

    Article  Google Scholar 

  32. C. Wen, B. Huang, Z. Chen, Y. Rong, Mat. Sci. Eng. A 438-440, 420 (2006)

    Article  Google Scholar 

  33. P. Pawlow, Z. Phys. Chem. Stoechiom. Verwandtschafts. 65, 545 (1909)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutter, D., Nielaba, P. Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles. Eur. Phys. J. B 84, 109–113 (2011). https://doi.org/10.1140/epjb/e2011-20661-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20661-4

Keywords

Navigation