Defects in hexagonal-AlN sheets by first-principles calculations

  • E. F. de AlmeidaJr.
  • F. de Brito Mota
  • C. M. C. de Castilho
  • A. Kakanakova-Georgieva
  • G. K. Gueorguiev
Regular Article


Theoretical calculations focused on the stability of an infinite hexagonal AlN (h-AlN) sheet and its structural and electronic properties were carried out within the framework of DFT at the GGA-PBE level of theory. For the simulations, an h-AlN sheet model system consisting in 96 atoms per super-cell has been adopted. For h-AlN, we predict an Al-N bond length of 1.82 Å and an indirect gap of 2.81 eV as well as a cohesive energy which is by 6% lower than that of the bulk (wurtzite) AlN which can be seen as a qualitative indication for synthesizability of individual h-AlN sheets. Besides the study of a perfect h-AlN sheet, also the most typical defects, namely, vacancies, anti-site defects and impurities were also explored. The formation energies for these defects were calculated together with the total density of states and the corresponding projected states were also evaluated. The charge density in the region of the defects was also addressed. Energetically, the anti-site defects are the most costly, while the impurity defects are the most favorable, especially so for the defects arising from Si impurities. Defects such as nitrogen vacancies and Si impurities lead to a breaking of the planar shape of the h-AlN sheet and in some cases to the formation of new bonds. The defects significantly change the band structure in the vicinity of the Fermi level in comparison to the band structure of the perfect h-AlN which can be used for deliberately tailoring the electronic properties of individual h-AlN sheets.


Solid State and Materials 


  1. 1.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Nalt. Acad. Sci. 102, 10451 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    M. Farahani, T.S. Ahmadi, A. Seif, J. Mol. Struct. 126, 913 (2009) Google Scholar
  3. 3.
    S.K. Mishra, S. Satpathy, O. Jepsen, J. Phys.: Condens. Matter 9, 461 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    J.N. Coleman, M. Lotya, A. OŃeil et al., Science 331, 568 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    D. Ehrentraut, Z. Sitar, MRS Bulletin 34, 259 (2009)CrossRefGoogle Scholar
  6. 6.
    R. Dalmau, B. Moody, R. Schlesser, S. Mita, J. Xie, M. Feneberg, B. Neuschl, K. Thonke, R. Collazo, A. Rice, J. Tweedie, Z. Sitar, J. Electrochem. Soc. 158, H530 (2011) CrossRefGoogle Scholar
  7. 7.
    A. Kakanakova-Georgieva, R.R. Ciechonski, U. Forsberg, A. Lundskog, E. Janzén, Cryst. Growth Design 9, 880 (2009)CrossRefGoogle Scholar
  8. 8.
    T. Oto, R.G. Banal, K. Kataoka, M. Funato, Y. Kawakami, Nat. Photon. 4, 767 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441, 325 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    A. Khan, K. Balakrishnan, T. Katona, Nat. Photon. 2, 77 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    O. Landré, V. Fellman, P. Jaffrennou, C. Bougerol, H. Renevier, A. Cros, B. Daudin, Appl. Phys. Lett. 96, 061912 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    Z.-H. Yuan, S.-Q. Sun, Y.Q. Duan, D.-J. Wang, Nanoscale Res. Lett. 4, 1126 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    T. Xie, Y. Lin, G. Wu, X. Yuan, Z. Jiang, C. Ye, G. Meng, L. Zhang, Inorg. Chem. Commun. 7, 545 (2004)CrossRefGoogle Scholar
  14. 14.
    Y. Li, Z. Zhou, P. Shen, S.B. Zhang, Z. Chen, Nanotechnology 20, 215701 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    Springer Handbook of Condensed Matter and Materials Data Springer Berlin-Heidelberg, edited by W. Martienssen, G. Warlimont (2005) Google Scholar
  16. 16.
    W.-G. Jung, S.-H. Jung, P. Kung, M. Razeghi, Nanotechnology 17, 54 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    O. Ambacher, J. Phys. D 31, 2653 (1998) ADSCrossRefGoogle Scholar
  18. 18.
    D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)CrossRefGoogle Scholar
  19. 19.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) ADSCrossRefGoogle Scholar
  20. 20.
    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982) ADSCrossRefGoogle Scholar
  21. 21.
    S. Azevedo, J. Kaschny, C.M.C. de Castilho, F.B. Mota, Nanotechnology 18, 495707 (2007) CrossRefGoogle Scholar
  22. 22.
    S. Loughin, R.H. French, W.Y. Ching, Y.N. Xu, G.A. Slack, Appl. Phys. Lett. 63, 1182 (1993) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Wang, S. Shi, Solid State Commun. 150, 1473 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    F.-L. Zheng, J.-M. Zhang, Y. Zhang, V. Ji, Physica B 405, 3775 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    S. Hou, J. Zhang, Z. Shen, X. Zhao, Z. Xue, Physica E 27, 45 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    S. Azevedo, J. Kaschny, C.M.C. de Castilho, F. de Brito Mota, Eur. Phys. J. B 67, 507 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    R.F. Liu, C. Cheng, Phys. Rev. B 76, 014405 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    P. Boguslawski, E.L. Briggs, J. Bernholc, Appl. Phys. Lett. 69, 233 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    E. Monroy, J. Zenneck, G. Cherkashinin, O. Ambacher, M. Hermann, M. Stutzmann, M. Eickhoff, Appl. Phys. Lett. 88, 071906 (2006) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • E. F. de AlmeidaJr.
    • 1
  • F. de Brito Mota
    • 1
  • C. M. C. de Castilho
    • 1
    • 2
  • A. Kakanakova-Georgieva
    • 3
  • G. K. Gueorguiev
    • 3
  1. 1.Grupo de Física de Superfícies e Materiais, Instituto de FísicaUniversidade Federal da Bahia, Campus Universitário da FederaçãoSalvadorBrazil
  2. 2.Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente (CIENAM) INCT-E&AUniversidade Federal da BahiaSalvadorBrazil
  3. 3.Department of Physics, Chemistry and Biology, IFMLinköping UniversityLinköpingSweden

Personalised recommendations