How coupling determines the entrainment of circadian clocks

Statistical and Nonlinear Physics

Abstract

Autonomous circadian clocks drive daily rhythms in physiology and behaviour. A network of coupled neurons, the suprachiasmatic nucleus (SCN), serves as a robust self-sustained circadian pacemaker. Synchronization of this timer to the environmental light-dark cycle is crucial for an organism’s fitness. In a recent theoretical and experimental study it was shown that coupling governs the entrainment range of circadian clocks. We apply the theory of coupled oscillators to analyse how diffusive and mean-field coupling affects the entrainment range of interacting cells. Mean-field coupling leads to amplitude expansion of weak oscillators and, as a result, reduces the entrainment range. We also show that coupling determines the rigidity of the synchronized SCN network, i.e. the relaxation rates upon perturbation. Our simulations and analytical calculations using generic oscillator models help to elucidate how coupling determines the entrainment of the SCN. Our theoretical framework helps to interpret experimental data.

Keywords

Coupling Strength Circadian Clock Couple Oscillator Limit Cycle Oscillator Bifurcation Line 

References

  1. 1.
    T. Roenneberg, S. Daan, M. Merrow, J. Biol. Rhythms 18, 183 (2003) CrossRefGoogle Scholar
  2. 2.
    C. Huygens, Horologium oscillatorium, English translation: The pendulum clock (Iowa State University Press, Ames, 1986, 1673) Google Scholar
  3. 3.
    Y. Kuramoto, Chemical oscillations, waves, and turbulence (Courier Dover Publications, 2003) Google Scholar
  4. 4.
    V.S. Anishchenko, V. Astakhov, A. Neiman, T. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments (Springer-Verlag, New York, LLC, 2007) Google Scholar
  5. 5.
    A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex (Springer-Verlag, New York, 2009) Google Scholar
  6. 6.
    H. Ukai, H.R. Ueda, Ann. Rev. Physiol. 72, 579 (2010) CrossRefGoogle Scholar
  7. 7.
    D.K. Welsh, D.E. Logothetis, M. Meister, S.M. Reppert, Neuron 14, 697 (1995) CrossRefGoogle Scholar
  8. 8.
    E.D. Herzog, S.J. Aton, R. Numano, Y. Sakaki, H. Tei, J. Biol. Rhythms 19, 35 (2004) CrossRefGoogle Scholar
  9. 9.
    A.C. Liu et al., Cell 129, 605 (2007) CrossRefGoogle Scholar
  10. 10.
    S.J. Aton, E.D. Herzog, Neuron 48, 531 (2005) CrossRefGoogle Scholar
  11. 11.
    D.K. Welsh, J.S. Takahashi, S.A. Kay, Ann. Rev. Physiol. 72, 551 (2010) CrossRefGoogle Scholar
  12. 12.
    M. Comas, D.G.M. Beersma, K. Spoelstra, S. Daan, J. Biol. Rhythms 21, 362 (2006) CrossRefGoogle Scholar
  13. 13.
    H.D. Piggins, M.C. Antle, B. Rusak, J. Neurosci. 15, 5612 (1995) Google Scholar
  14. 14.
    C. Pittendrigh, S. Daan, J. Comp. Physiol. A 106, 291 (1976) CrossRefGoogle Scholar
  15. 15.
    J. Aschoff, H. Pohl, Naturwissenschaften 65, 80 (1978) ADSCrossRefGoogle Scholar
  16. 16.
    J. Vilaplana, T. Cambras, A. Campuzano, A. Díez-Noguera, Chronobiol. Int. 14, 9 (1997) CrossRefGoogle Scholar
  17. 17.
    K. Yagita, H. Okamura, FEBS Lett. 465, 79 (2000) CrossRefGoogle Scholar
  18. 18.
    E.D. Buhr, S.H. Yoo, J.S. Takahashi, Science 330, 379 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    U. Abraham, A.E. Granada, P.O. Westermark, M. Heine, A. Kramer, H. Herzel, Mol. Syst. Biol. 6, 438 (2010) CrossRefGoogle Scholar
  20. 20.
    A. Winfree, The geometry of biological time (Springer-Verlag, New York, 1980) Google Scholar
  21. 21.
    R.E. Kronauer, C.A. Czeisler, S.F. Pilato, M.C. Moore-Ede, E.D. Weitzman, Am. J. Physiol. 242, R3 (1982) Google Scholar
  22. 22.
    L. Glass, M.M. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, 1988) Google Scholar
  23. 23.
    J.C. Leloup, A. Goldbeter, Proc. Natl. Acad. Sci. U.S.A. 100, 7051 (2003) ADSCrossRefGoogle Scholar
  24. 24.
    D.B. Forger, C.S. Peskin, Proc. Natl. Acad. Sci. U.S.A. 100, 14806 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    S. Becker-Weimann, J. Wolf, H. Herzel, A. Kramer, Biophys. J. 87, 3023 (2004) ADSCrossRefGoogle Scholar
  26. 26.
    A.E. Granada, H. Herzel, PLoS One 4, e7057 (2009) Google Scholar
  27. 27.
    S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita, M. Kobayashi, H. Okamura, Science 302, 1408 (2003) ADSCrossRefGoogle Scholar
  28. 28.
    P.O. Westermark, D.K. Welsh, H. Okamura, H. Herzel, PLoS Comput. Biol. 5, e1000580 (2009) Google Scholar
  29. 29.
    C.S. Pittendrigh, W.T. Kyner, T. Takamura, J. Biol. Rhythms 6, 299 (1991) CrossRefGoogle Scholar
  30. 30.
    M.H. Vitaterna, C.H. Ko, A.M. Chang, E.D. Buhr, E.M. Fruechte, A. Schook, M.P. Antoch, F.W. Turek, J.S. Takahashi, Proc. Natl. Acad. Sci. U.S.A. 103, 9327 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    S.A. Brown, D. Kunz, A. Dumas, P.O. Westermark, K. Vanselow, A. Tilmann-Wahnschaffe, H. Herzel, A. Kramer, Proc. Natl. Acad. Sci. U.S.A. 105, 1602 (2008) ADSCrossRefGoogle Scholar
  32. 32.
    H.T. van der Leest, J.H.T. Rohling, S. Michel, J.H. Meijer, PLoS One 4, e4976 (2009) Google Scholar
  33. 33.
    W. Ebeling, H. Herzel, W. Richert, L. Schimansky-Geier, Z. Angew. Math. Mech. 66, 141 (1986) MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    R. Wever, J. Theor. Biol. 36, 119 (1972) CrossRefGoogle Scholar
  35. 35.
    M.D. Schwartz, C. Wotus, T. Liu, W.O. Friesen, J. Borjigin, G.A. Oda, H.O. de la Iglesia, Proc. Natl. Acad. Sci. U.S.A. 106, 17540 (2009) ADSCrossRefGoogle Scholar
  36. 36.
    A.E. Granada, T. Cambras, A. Díez-Noguera, H. Herzel, Interface Focus 1, 153 (2011) CrossRefGoogle Scholar
  37. 37.
    K. Bar-Eli, J. Phys. Chem. 88, 3616 (1984) CrossRefGoogle Scholar
  38. 38.
    D. Aronson, G. Ermentrout, N. Kopell, Physica D 41, 403 (1990) MathSciNetADSMATHCrossRefGoogle Scholar
  39. 39.
    G. Asher, U. Schibler, Cell Metabol. 13, 125 (2011) CrossRefGoogle Scholar
  40. 40.
    J.S. O’Neill, E.S. Maywood, J.E. Chesham, J.S. Takahashi, M.H. Hastings, Science 320, 949 (2008) ADSCrossRefGoogle Scholar
  41. 41.
    A. Granada, R.M. Hennig, B. Ronacher, A. Kramer, H. Herzel, Methods Enzymol. 454, 1 (2009) CrossRefGoogle Scholar
  42. 42.
    A. Pikovsky, O. Popovych, Y. Maistrenko, Phys. Rev. Lett. 87, 044102 (2001) ADSCrossRefGoogle Scholar
  43. 43.
    E. Doedel, R. Paffenroth, A. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Oldeman, B. Sandstede, X. Wang, AUTO2000: Continuation and bifurcation software for ordinary differential equations (with HOMCONT), Technical report, Concordia University, 2002 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute for Theoretical BiologyHumboldt UniversityBerlinGermany

Personalised recommendations