The European Physical Journal B

, Volume 84, Issue 2, pp 177–181 | Cite as

Thermal transport in the intermetallic compound CeNi4Cr

Regular Article Solid State and Materials


Electrical resistivity, thermopower (TEP), thermal conductivity and the thermoelectric figure of merit are studied for the CeNi4Cr compound, which has been previously suggested to be a fluctuating valence system with a tendency to the increase of the effective mass at low temperatures. The analysis of the thermoelectric properties confirms such a possibility and provides characteristic parameters like the Debye temperature, Fermi energy and the position of the f band. Both the thermopower and the magnetic part of the electrical resistivity could be analyzed within a similar model assuming a narrow f-band of the Lorentzian form near the Fermi energy. The thermal conductivity shows that the phonon contribution exceeds the electronic one below 220 K.


Electrical Resistivity Debye Temperature Heavy Fermion LaNi CeCu 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.K. Jain, Ankur Jain, Shivani Agarwal, N.P. Lalla, V. Ganesan, D.M. Phase, I.P. Jain, J. Alloys Compd. 430, 165 (2007) CrossRefGoogle Scholar
  2. 2.
    P. Murugan, M.S. Bahramy, Y. Kawazoe, Phys. Rev. B 77, 064401 (2008) CrossRefADSGoogle Scholar
  3. 3.
    T. Toliński, A. Kowalczyk, M. Reiffers, E. Gažo, M. Zapotoková, J. Kováč, G. Chełkowska, J. Magn. Magn. Mater. 321, 1121 (2009) CrossRefADSGoogle Scholar
  4. 4.
    J.C. Fuggle, F.U. Hillebrecht, Z. Zolnierek, R. Lässer, Ch. Freiburg, O. Gunnarsson, K. Schönhammer, Phys. Rev. B 27, 7330 (1983) CrossRefADSGoogle Scholar
  5. 5.
    T. Toliński, Mod. Phys. Lett. B 21, 431 (2007)CrossRefADSGoogle Scholar
  6. 6.
    C.S. Garde, J. Ray, Phys. Rev. B 51, 2960 (1995) CrossRefADSGoogle Scholar
  7. 7.
    N. Oeschler et al., in Properties and Applications of Thermoelectric Materials, edited by V. Zlatić, A.C. Hewson, NATO Science for Peace and Security Series B: Physics and Biophysics (Springer Science+Business Media B.V. 2009), p. 81Google Scholar
  8. 8.
    M.D. Koterlyn, O. Babych, G.M. Koterlyn, J. Alloys Compd. 325, 6 (2001)CrossRefGoogle Scholar
  9. 9.
    F. Patthey, W.-D. Schneider, Y. Baer, B. Delley, Phys. Rev. B 34, 2967 (1986) CrossRefADSGoogle Scholar
  10. 10.
    F. Patthey, J.M. Imer, W.-D. Schneider, H. Beck, Y. Baer, B. Delley, Phys. Rev. B 42, 8864 (1990) CrossRefADSGoogle Scholar
  11. 11.
    T. Toliński, V. Zlatiæ, A. Kowalczyk, J. Alloys Compd. 490, 15 (2010)CrossRefGoogle Scholar
  12. 12.
    V. Zlatiæ, R. Monnier, J.K. Freericks, Phys. Rev. B 78, 045113 (2008) CrossRefADSGoogle Scholar
  13. 13.
    A. Houghton, N. Read, H. Won, Phys. Rev. B 35, 5123 (1987) CrossRefADSGoogle Scholar
  14. 14.
    K. Behnia, D. Jaccard, J. Flouquet, J. Phys.: Condens. Mater. 16, 5187 (2004) CrossRefADSGoogle Scholar
  15. 15.
    M.D. Koterlyn, G.M. Koterlyn, R.I. Yasnitskii, Physica B 355, 231 (2005) CrossRefADSGoogle Scholar
  16. 16.
    E. Bauer, E. Gratz, G. Hutflesz, H. Müller, J. Phys.: Condens. Mater. 3, 7641 (1991)CrossRefADSGoogle Scholar
  17. 17.
    H.J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Molecular Physics, PASPoznańPoland

Personalised recommendations