Advertisement

The European Physical Journal B

, Volume 81, Issue 4, pp 481–487 | Cite as

X-ray coherent diffraction interpreted through the fractional Fourier transform

  • D. Le Bolloc’h
  • J. F. Sadoc
Computational Methods Regular Article

Abstract

Diffraction of coherent X-ray beams is treated through the fractional Fourier transform. The transformation allow us to deal with coherent diffraction experiments from the Fresnel to the Fraunhofer regime. The analogy with the Huygens-Fresnel theory is first discussed, a generalized uncertainty principle is introduced and the successive diffraction of two objects is interpreted through the fractional Fourier transform.

Keywords

Fourier Transform Gaussian Beam Spherical Surface Dark Spot Fresnel Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fresnel, La diffraction de la lumière (Académie des sciences, 1819) Google Scholar
  2. 2.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, 1999) Google Scholar
  3. 3.
    D. Le Bolloc’h, F. Livet, F. Bley, T. Schulli, M. Veron, T.H. Metzger, J. Synchrotron Radiat. 9, 258 (2002) CrossRefGoogle Scholar
  4. 4.
    D. Le Bolloc’h, J.P. Itié, A. Polian, S. Ravy, High Pressure Res. 29, 635 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    V.L.R. Jacques, D. Le Bolloc’h, S. Ravy, C. Giles, F. Livet, S.B. Wilkins, Eur. Phys. J. B 70, 317 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    V. Namias, J. Inst. Math. Appl. 25, 241 (1980) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    A. Bultheel, H. Martinez, Report TW337, Department of Computer Sciences Katholieke Universiteit, Leuven, 2002 Google Scholar
  8. 8.
    A.C. McBride, F.H. Kerr, IMA J. Appl. Math. 39, 159 (1987) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    P. Pellat-Finet, Opt. Lett. 19, 1388 (1994) ADSCrossRefGoogle Scholar
  10. 10.
    P. Pellat-Finet (C.R. Acad. Sci., Paris, 1995), t 320, Serie IIb, p. 91 Google Scholar
  11. 11.
    J.H. McCellan, T.W. Parks. IEEE Trans. Audio Electroacoust. 20, 66 (1972) CrossRefGoogle Scholar
  12. 12.
    G. Dattoli, A. Torre, G. Mazzacurati, IMA J. Appl. Math. 60, 215 (1998) ADSMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics (John Wiley & Sons, New York, 1977) Google Scholar
  14. 14.
    J. Shen, Wavelet Analysis: Twenty Year’s Developments, edited by Z.-X. Zhou (World Scientific Press, Singapore, 2002) Google Scholar
  15. 15.
    M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C.M. Kewish, R. Wepf, O. Bunk, F. Pfeiffer, Nature 467, 436 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Pfeifer, G.J. Williams, I.A. Vartanyants, R. Harder, I.K. Robinson, Nature 442, 63 (2006) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratoire de Physique des Solides, Bât. 510Univ. Paris-Sud, CNRS, UMR 8502Orsay CedexFrance

Personalised recommendations