Advertisement

The quantum compass chain in a transverse magnetic field

  • M. Motamedifar
  • S. Mahdavifar
  • S. Farjami Shayesteh
Regular Article Solid State and Materials

Abstract

We study the magnetic behaviors of a spin-1/2 quantum compass chain (QCC) in a transverse magnetic field, by means of the analytical spinless fermion approach and numerical Lanczos method. In the absence of the magnetic field, the phase diagram is divided into four gapped regions. To determine what happens by applying a transverse magnetic field, using the spinless fermion approach, critical fields are obtained as a function of exchanges. Our analytical results show, the field-induced effects depend on in which one of the four regions the system is. In two regions of the phase diagram, the Ising-type phase transition happens in a finite field. In another region, we have identified two quantum phase transitions (QPT)s in the ground state magnetic phase diagram. These quantum phase transitions belong to the universality class of the commensurate-incommensurate phase transition. We also present a detailed numerical analysis of the low energy spectrum and the ground state magnetic phase diagram. In particular, we show that the intermediate state (h c1 < h < h c2) is gapful, describing the spin-flop phase.

Keywords

Transverse Magnetization Quantum Phase Transition Mott Insulator Lanczos Method Ground State Phase Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.-W. Cheong, Nature Mater. 6, 927 (2007) MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    B.J. Kim, H. Jin, S.J. Moon, J.-Y. Kim, B.-G. Park, C.S. leem, J. Yu, T.W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G. Cao, E. Rotenberg, Phys. Rev. Lett. 101, 076402 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    K.I. Kugel, D.I. Khomskii, Sov. Phys. Jetp 37, 725 (1973) ADSGoogle Scholar
  4. 4.
    B. Doucot, M.V. Feigelman, L.B. Ioffe, A.S. Ioselevich, Phys. Rev. B 71, 024505 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    Z. Nussinov, E. Fradkin, Phys. Rev. B 71, 195120 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    J. Dorier, F. Becca, F. Mila, Phys. Rev. B 72, 024448 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    H.-D. Chen, C. Fang, J. Hu, H. Yao, Phys. Rev. B 75, 144401 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    R. Orus, A.C. Doherty, G. Vidal, Phys. Rev. Lett. 102, 077203 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    J. Vidal, R. Thomale, K.P. Schmidt, S. Dusuel, Phys. Rev. B 80, 081104 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    W. Brzezicki, A.M. Oles, Phys. Rev. B 82, 060401 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    L. Cincio, J. Dziarmaga, A.M. Oles, Phys. Rev. B 82, 104416 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    S. Wenzel, W. Janke, Phys. Rev. B 78, 064402 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    S. Wenzel, W. Janke, Phys. Rev. B 78, E099902 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    S. Wenzel, W. Janke, Phys. Rev. E 81, 066702 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    A. Mishra, M. Ma, F.-C. Zhang, S. Guertler, L.-H. Tang, S. Wan, Phys. Rev. Lett. 93, 207201 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    A. Mishra, M. Ma, F.-C. Zhang, S. Guertler, L.-H. Tang, S. Wan, Phys. Rev. B 78, E099902 (2008) CrossRefGoogle Scholar
  17. 17.
    S. Wenzel, W. Janke, Phys. Rev. B 80, 054403 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    W. Brzezicki, J. Dziarmaga, A.M. Oles, Phys. Rev. B 75, 134415 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    W.-L. You, G.-S. Tian, Phys. Rev. B 78, 184406 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    W. Brzezicki, A.M. Oles, Acta Phys. Pol. A 115, 162 (2009) Google Scholar
  21. 21.
    Ke-Wei Sun, Yu-Yu Zhang, Qing-Hu Chen, Phys. Rev. B 79, 104429 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    E. Eriksson, H. Johannesson, Phys. Rev. B 79, 224424 (2009) MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    S. Mahdavifar, Eur. Phys. J. B 77, 77 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    Ke-Wei Sun, Qing-Hu Chen, Phys. Rev. B 80, 174417 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    M. Motamedifar, S. Mahdavifar, S. Shayesteh Farjami, J. Supercond. Nov. Magn. 24, 769 (2011) CrossRefGoogle Scholar
  26. 26.
    R. Jafari, Phys. Rev. B 84, 035112 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    J.H.H. Perk, H.W. Capel, M.J. Zuilhof, Th.J. Siskens, Physica A 81, 319 (1975) ADSCrossRefGoogle Scholar
  28. 28.
    Y. Nishiyama, N. Hatano, M. Suzuki, J. Phys. Soc. Jpn 64, 1967 (1995) ADSCrossRefGoogle Scholar
  29. 29.
    J. Abouie, S. Mahdavifar, Phys. Rev. B 78, 184437 (2008) ADSCrossRefGoogle Scholar
  30. 30.
    M. Vojta, Rep. Prog. Phys. 66, 2069 (2003) MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    M.N. Barber, Phase Transitions and Critical Phenomena 8, edited by C. Domb, J.L. Lebowitz (Academic Press, London, New York, 1983), p. 146 Google Scholar
  32. 32.
    G.I. Japaridze, A. Langari, S. Mahdavifa, J. Phys.: Condens. Matter 19, 076201 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    S. Mahdavifar, A. Akbari, J. Phys. Soc. Jpn 77, 024710 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Motamedifar
    • 1
  • S. Mahdavifar
    • 1
  • S. Farjami Shayesteh
    • 1
  1. 1.Department of PhysicsUniversity of GuilanRashtIran

Personalised recommendations