The European Physical Journal B

, Volume 81, Issue 3, pp 283–290 | Cite as

Solid phase epitaxy amorphous silicon re-growth: some insight from empirical molecular dynamics simulation

Insight from molecular dynamics simulation on amorphous silicon re-growth
Computational Methods


The modelling of interface migration and the associated diffusion mechanisms at the nanoscale level is a challenging issue. For many technological applications ranging from nanoelectronic devices to solar cells, more knowledge of the mechanisms governing the migration of the silicon amorphous/crystalline interface and dopant diffusion during solid phase epitaxy is needed. In this work, silicon recrystallisation in the framework of solid phase epitaxy and the influence on orientation effects have been investigated at the atomic level using empirical molecular dynamics simulations. The morphology and the migration process of the interface has been observed to be highly dependent on the original inter-facial atomic structure. The [100] interface migration is a quasi-planar ideal process whereas the cases [110] and [111] are much more complex with a more diffuse interface. For [110], the interface migration corresponds to the formation and dissolution of nanofacets whereas for [111] a defective based bilayer reordering is the dominant re-growth process. The study of the interface velocity migration in the ideal case of defect free re-growth reveals no difference between [100] and [110] and a decrease by a mean factor of 1.43 for the case [111]. Finally, the influence of boron atoms in the amorphous part on the interface migration velocity is also investigated in the case of [100] orientation.


Molecular Dynamic Molecular Dynamic Simulation Boron Atom Boron Concentration Interface Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Duffy, M.J.H. Van Dal, B.J. Pawlak, M. Kaiser, R.G.R. Weemaes, B. Degroote, E. Kunnen, E. Altamirano, Appl. Phys. Lett. 90, 241912 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    K.L. Saenger, J.P. de Souza, K.E. Fogel, J.A. Ott, C.Y. Sung, D.K. Sadana, H. Yin, J. Appl. Phys. 101, 024908 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    R.M.B. Agaiby, M. Becker, S.B. Thapa, U. Urmoneit, A. Berger, A. Gawlik, G. Sarau, S.H. Christiansen, J. Appl. Phys. 107, 3319654 (2010) CrossRefGoogle Scholar
  4. 4.
    S. Huet, P. Juliet, X. Ducros, F. Sanchette, United States Patent, 7592198 B2 (2009) Google Scholar
  5. 5.
    R. Duffy, V.C. Venezia, A. Henriga, B.J. Pawlak, M.J.P. Hopstaken, G.C.J. Maas, Y. Tamminga, T. Dao, F. Roozeboom, L. Pelaz, Appl. Phys. Lett. 84, 4283 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Chernov, J. Cryst. Growth 264, 499 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R. Soc. Lond. A 243, 299 (1951) MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    G.-Q. Lu, E. Nygren, M.J. Aziz, J. Appl. Phys. 70, 5323 (1991) ADSCrossRefGoogle Scholar
  9. 9.
    L. Pelaz, L.A. Marqués, M. Aboy, P. López, I. Santos, J. Eur. Phys. B 72, 323 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    V. Cuny, Q. Brulin, E. Lampin, E. Lecat, C. Krzeminski, F. Cleri, Europhys. Lett. 76, 842 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    T. Motooka, K. Nisihira, S. Munetoh, K. Moriguchi, A. Shintani, Phys. Rev. B 61, 8537 (2000) ADSCrossRefGoogle Scholar
  12. 12.
    M.H. Grabow, G.H. Gilmer, A.F. Bakker, in Atomic Scale Calculations in Materials Science, edited by J. Tersoff, D. Vanderbilt, V. Vitek, Mater. Res. Soc. Symp. Proc. (Pittsburgh, 1989), Vol. 141 Google Scholar
  13. 13.
    I. Martin-Bragado, V. Moroz, Appl. Phys. Lett. 95, 123123 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    M. Ishimaru, S. Munetoh, T. Motooka, Phys. Rev. B 56, 15133 (1997) ADSCrossRefGoogle Scholar
  15. 15.
    S. Nosé, Molec. Phys. 52, 255 (1984) ADSCrossRefGoogle Scholar
  16. 16.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985) ADSCrossRefGoogle Scholar
  17. 17.
    J. Tersoff, Phys. Rev. B 38, 9902 (1988) ADSCrossRefGoogle Scholar
  18. 18.
    F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985) ADSCrossRefGoogle Scholar
  19. 19.
    A. Mattoni, L. Colombo, Phys. Rev. B 69, 045204 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    A.M.C. Pérez-Martín, J.J. Jiménez-Rodriguez, J.C. Jiménez-Sáez, Appl. Surf. Sci. 234, 228 (2004) CrossRefGoogle Scholar
  21. 21.
    C. Krzeminski, Q. Brulin, V. Cuny, E. Lecat, E. Lampin, F. Cleri, J. Appl. Phys. 101, 2743089 (2007) Google Scholar
  22. 22.
    F. Wooten, K. Winer, D. Weaire, Phys. Rev. Lett. 54, 1392 (1985) ADSCrossRefGoogle Scholar
  23. 23.
    R. Drosd, J. Washburn, J. Appl. Phys. 53, 397 (1982) ADSCrossRefGoogle Scholar
  24. 24.
    E. Lampin, C. Krzeminski, J. Appl. Phys. 106, 063519 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    G.L. Olson, J.A. Roth, Mater. Sci. Rep. 3, 1 (1988) CrossRefGoogle Scholar
  26. 26.
    L. Csepregi, E.F. Kennedy, J.W. Mayer, T.W. Sigmon, J. Appl. Phys. 49, 3906 (1978) ADSCrossRefGoogle Scholar
  27. 27.
    M. Posselt, A. Gabriel, Phys. Rev. B 80, 045202 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    G.-Q. Lu, E. Nygren, M.J. Aziz, J. Appl. Phys. 70, 5323 (1991) ADSCrossRefGoogle Scholar
  29. 29.
    L.A. Marqués, L. Pelaz, I. Santos, V.C. Venezia, Phys. Rev. B 74, 201201(R) (2006) ADSGoogle Scholar
  30. 30.
    A. Mattoni, L. Colombo, Europhys. Lett. 62, 6 (2003) CrossRefGoogle Scholar
  31. 31.
    B.C. Johnson, P. Gortmaker, J.C. McCallum, Phys. Rev. B 77, 214109 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Département ISENInstitut d’Électronique de Microélectronique et de NanotechnologiesVilleneuve d’Ascq CedexFrance

Personalised recommendations