Advertisement

The European Physical Journal B

, Volume 81, Issue 2, pp 179–183 | Cite as

Calculation of shuffle 60° dislocation width and Peierls barrier and stress for semiconductors silicon and germanium

Regular Article

Abstract

The dislocation width for shuffle 60° dislocation in semiconductors Si and Ge have been calculated by the improved P-N theory in which the discrete effect has been taken into account. Peierls barrier and stress have been evaluated with considering the contribution of strain energy. The discrete effect make dislocation width wider, and Peierls barrier and stress lower. The dislocation width of 60° dislocation in Si and Ge is respectively about 3.84 Å and 4.00 Å (∼1b, b is the Burgers vector). In the case of 60° dislocation, after considering the contribution of strain energy, Peierls barrier and stress are increased. The Peierls barrier for 60° dislocation in Si and Ge is respectively about 15 meV/Å and 12–14 meV/Å, Peierls stress is about 3.8 meV/Å3 (0.6 GPa) and 2.7–3.3 meV/Å3 (0.4–0.5 GPa). The Peierls stress for Si agrees well with the numerical results and the critical stress at 0 K extrapolated from experimental data. Ge behaves similarly to Si.

Keywords

Burger Vector Critical Stress Screw Dislocation Diamond Crystal Discrete Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Wiley, New York, 1982) Google Scholar
  2. 2.
    P.B. Hirsch, Sci. Technol. 1, 666 (1985) Google Scholar
  3. 3.
    M.S. Duesbery, G.Y. Richardson, Crit, Rev. Solid State Mater. Sci. 17, 1 (1991) CrossRefGoogle Scholar
  4. 4.
    H. Alexander, H. Teichler, in Materials Science and Technology, edited by R.W. Cahn, P. Hassen, E.J. Kramer (VCH Weiheim, Cambridge, 1993), Vol. 4, p. 249 Google Scholar
  5. 5.
    Y.B. Bolkhovityanov et al., Semiconductors 37, 493 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    J. Rabier, J.L. Demenet, Script. Mater. 45, 1259 (2001) CrossRefGoogle Scholar
  7. 7.
    C.X. Li, Q.Y. Meng, G. Li, L.J. Yang, Superlattices Microstruct. 40, 113 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    Y.H. Jing, Q.Y. Meng, W. Zhao, Physica B 404, 2138 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    L. Pizzagalli, J. Godet, S. Brochard, Phys. Rev. Lett. 103, 065505 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    B. Joos, Q. Ren, M.S. Duesbery, Phys. Rev. B 50, 5890 (1994) ADSCrossRefGoogle Scholar
  11. 11.
    R.E. Peierls, Proc. Phys. Soc. 52, 23 (1940) CrossRefGoogle Scholar
  12. 12.
    B. Joos, M.S. Duesbery, Phys. Rev. Lett. 78, 266 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    V.V. Bulatov, E. Kaxiras, Phys. Rev. Lett. 78, 4221 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    S.F. Wang, Phys. Rev. B 65, 094111 (2002) CrossRefGoogle Scholar
  15. 15.
    S.F. Wang, Chin. Phys. 14, 2575 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    S.F. Wang, J. Phys. A Math. Theor. 42, 025208 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    S.F. Wang, R.P. Liu, X.Z. Wu, J. Phys.: Condens. Matter 20, 485207 (2008) CrossRefGoogle Scholar
  18. 18.
    X.Z. Wu, S.F. Wang, Front. Mater. Sci. China 3, 205 (2009) CrossRefGoogle Scholar
  19. 19.
    S.F. Wang, H.L. Zhang. X.Z. Wu, R.P. Liu, J. Phys.: Condens. Matter 22, 055801 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    J.W. Christian, V. Vitek, Rep. Prog. Phys. 33, 307 (1970) ADSCrossRefGoogle Scholar
  21. 21.
    K. Kang, W. Cai, Philos. Mag. 87, 2169 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    S.F. Wang, Phys. Lett. A 313, 408 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  23. 23.
    S.F. Wang, Chin. Phys. 15, 1301 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    J. Castaing, P. Veyssiere, L.P. Kubin, J. Rabier, Philos. Mag. A 44, 1407 (1981) ADSCrossRefGoogle Scholar
  25. 25.
    J. Rabier, Phys. Stat. Sol. (A) 204, 2248 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Kunming University of Science and TechnologyKunmingP.R. China

Personalised recommendations