The European Physical Journal B

, Volume 84, Issue 4, pp 673–684 | Cite as

Simulating feedback and reversibility in substrate-enzyme reactions

  • D. A. J. van Zwieten
  • J. E. Rooda
  • D. Armbruster
  • J. D. Nagy
Open Access
Regular Article Focus Section on Frontiers in Network Science: Advances and Applications


We extend discrete event models (DEM) of substrate-enzyme reactions to include regulatory feedback and reversible reactions. Steady state as well as transient systems are modeled and validated against ordinary differential equation (ODE) models. The approach is exemplified in a model of the first steps of glycolysis with the most common regulatory mechanisms. We find that in glycolysis, feedback and reversibility together act as a significant damper on the stochastic variations of the intermediate products as well as for the stochastic variation of the transit times. This suggests that these feedbacks have evolved to control both the overall rate of, as well as stochastic fluctuations in, glycolysis.


Discrete Event Search Time Stochastic Variation Discrete Event Simulation Substrate Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Armbruster, J. Nagy, E.A.F. van de Rijt, J.E. Rooda, J. Phys. Chem. B 113, 5537 (2009)CrossRefGoogle Scholar
  2. 2.
    D.T. Gillespie, J. Comput. Phys. 22, 403 (1976)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    J.M. Pedraza, A. van Oudenaarden, Science 307, 1965 (2005)CrossRefADSGoogle Scholar
  4. 4.
    S. Tanase-Nicola, P.B. Warren, P.R. ten Wolde, Phys. Rev. Lett. 97, 068102 (2006)CrossRefADSGoogle Scholar
  5. 5.
    N. Rosenfield, M.B. Elowitz, U. Alon, J. Mol. Biol. 323, 785 (2002)CrossRefGoogle Scholar
  6. 6.
    Y. Togashi, T. Yanagida, A.S. Mikhailov, PLoS Comput. Biol. 6, e1000814 (2010)CrossRefGoogle Scholar
  7. 7.
    M.L. Ginger, G.I. McFadden, P.A.M. Michels, Phil. Trans. R. Soc. B 365, 831 (2010)CrossRefGoogle Scholar
  8. 8.
    J.J. Cazzulo, FASEB J. 6, 3153 (1993)Google Scholar
  9. 9.
    J. Moyersoen, J. Choe, E. Fan, W.G. Hol, P.A. Michels, FEMS Microbiol. Rev. 28, 603 (2004)CrossRefGoogle Scholar
  10. 10.
    H. Chen, D.D. Yao, Fundamentals of Queueing Networks: Performance, Asymptotics, and Optimization (Springer, Verlag, 2001)Google Scholar
  11. 11.
    E. Lefeber, D. Armbruster, Aggregate modeling of manufacturing systems, in Handbook of Production Planning, edited by R. Uzsoy, P. Keskinocak, K. Kempf, Kluwer International Series in Operation Research and Management Science (Chapman Hall, 2010)Google Scholar
  12. 12.
    G.E. Briggs, J.B.S. Haldane, Biochem. J. 19, 338 (1925)Google Scholar
  13. 13.
    L. Michaelis, M. Menten, Biochemische Zeitschrift 49, 333 (1913)Google Scholar
  14. 14.
    L.A. Segal, M. Slemrod, SIAM Rev. 31, 446 (1989)CrossRefMathSciNetGoogle Scholar
  15. 15.
    S.C. Kou, B.J. Cherayil, W. Min, B.P. English, X.S. Xie, J. Phys. Chem. B 109, 19068 (2005)CrossRefGoogle Scholar
  16. 16.
    H. Qian, Biophys. J. 95, 10 (2008)CrossRefADSGoogle Scholar
  17. 17.
    P.W. Kühl, M. Jobmann, J. Recept. Signal Transduction 26, 1 (2006)CrossRefGoogle Scholar
  18. 18.
    D.A.J. van Zwieten, Modeling biological networks with discrete event models, Master’s thesis, Eindhoven University of Technology, The Netherlands, 2010Google Scholar
  19. 19.
    L. Qiao, R.B. Nachbar, I.G. Kevrekidis, S.Y. Stanislav, PLOS Comput. Biol. 3, e184 (2007)CrossRefADSGoogle Scholar
  20. 20.
    B. Teusink, J. Passarge, C.A. Reijenga, E. Esgalhado, C.C. van der Weijden, M. Schepper, M.C. Walsh, B.M. Bakker, K. van Dam, H.V. Westerhoff, J.L. Snoep, Eur. J. Biochem. 267, 5313 (2000)CrossRefGoogle Scholar
  21. 21.
    M.V. Martinov, A.G. Plotnikov, V.M. Vitvitsky, F.I. Ataullakhanov, Biochim. Biophys. Acta 1474, 75 (2000)CrossRefGoogle Scholar
  22. 22.
    N. Ishiia, Y. Sugaa, FEBS Lett. 581, 413 (2007)CrossRefGoogle Scholar
  23. 23.
    D. Armbruster, J.D. Nagy, E.A.F. van de Rijt, J.E. Rooda, J. Phys. Chem. B 115, 7708 (2011)CrossRefGoogle Scholar
  24. 24.
    D. Armbruster, E. Stone, V. Kirk, Chaos 13, 71 (2003)CrossRefMATHADSMathSciNetGoogle Scholar
  25. 25.
    A.J. McKane, J.D. Nagy, T.J. Newman, M.O. Stefanini, J. Stat. Phys. 128, 165 (2007)CrossRefMATHADSMathSciNetGoogle Scholar
  26. 26.
    J.C.M. Baeten, D.A. van Beek, J.E. Rooda, Process Algebra, in Handbook of System Modeling, edited by P.A. Fishwick (Chapman Hall, Boca Ratan, 2007)Google Scholar
  27. 27.
    D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, R.R.H. Schiffelers, The Journal of Logic and Algebraic Programming 68, 129 (2006)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    S. Kar, W.T. Baumann, M.R. Paul, J.J. Tyson, Proc. Natl. Acad. Sci. U.S.A. 106, 6471 (2009)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • D. A. J. van Zwieten
    • 1
  • J. E. Rooda
    • 1
  • D. Armbruster
    • 1
    • 2
  • J. D. Nagy
    • 3
  1. 1.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.School of Mathematical and Statistical SciencesArizona State UniversityTempeUSA
  3. 3.Department of Life SciencesScottsdale Community CollegeScottsdaleUSA

Personalised recommendations