The European Physical Journal B

, Volume 79, Issue 4, pp 503–507 | Cite as

Correlation properties of anisotropic XY model with a sudden quench

Article

Abstract.

Starting from a general Hamiltonian which may undergo a quantum phase transition (QPT) with the change of a controllable parameter, we obtain a general conclusion that in a sudden quench system, when the final Hamiltonian is fixed, the behavior of the time-averaged expectation of any observable has close relationship with the gapless excitation of the initial Hamiltonian. To clarify our conclusion, we investigate the two-spin correlation of a XY chain in a transverse field under a sudden quench at zero temperature. The critical property of the derivative of quench two-spin correlation and the long-range correlation of the quench system are analyzed.

Keywords

Spin Chain Thermodynamic Limit Correlation Property Quantum Phase Transition Reduce Density Matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Sachdev, Quantum Phase Transition (Cambridge University Press, Cambridge, 1999) Google Scholar
  2. 2.
    M. Greiner et al., Nature (London) 419, 51 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    T.W.B. Kibble, J. Phys. A 9, 1387 (1976) ADSCrossRefGoogle Scholar
  4. 4.
    W.H. Zurek, Nature (London) 317, 505 (1985) ADSCrossRefGoogle Scholar
  5. 5.
    K. Sengupta, S. Powell, S. Sachdev, Phys. Rev. A 69, 053616 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    W.H. Zurek, U. Dorner, P. Zoller, Phys. Rev. Lett. 95, 105701 (2005) ADSCrossRefGoogle Scholar
  7. 7.
    J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    A. Polkovnikov, Phys. Rev. B 72, R161201 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    A. Sen, U. Sen, M. Lewenstein, Phys. Rev. A 72, 052319 (2005) ADSCrossRefGoogle Scholar
  10. 10.
    B. Damski, W.H. Zurek, Phys. Rev. A 73, 063405 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    F.M. Cucchietti, B. Damski, J. Dziarmaga, W.H. Zurek, Phys. Rev. A 75, 023603 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    V. Mukherjee, U. Divakaran, A. Dutta, D. Sen, Phys. Rev. B 76, 174303 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    K. Sengupta, D. Sen, S. Mondal, Phys. Rev. Lett. 100, 077204 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    A. Polkovnikov, V. Gritsev, Nat. Phys. 4, 477 (2008) CrossRefGoogle Scholar
  15. 15.
    M. Rigol, V. Dunjko, M. Olshanii, Nature (London) 452, 854 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Li, M. Huo, Z. Song, Phys. Rev. B 80, 054404 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    M. Rigol et al., Phys. Rev. Lett. 98, 050405 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    M. Rigol et al., Phys. Rev. A 74, 053616 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    D. Patane, A. Silva, F. Sols, L. Amico, Phys. Rev. Lett. 102, 245701 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, J. Schmiedmayer, Nature 449, 324 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    G. Roux, Phys. Rev. A 79, R021608 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    E. Barouch, B.M. McCoy, M. Dresden, Phys. Rev. A 2, 1075 (1970) ADSCrossRefGoogle Scholar
  23. 23.
    E. Barouch, B.M. McCoy, Phys. Rev. A 3, 786 (1971) ADSCrossRefGoogle Scholar
  24. 24.
    E. Barouch, B.M. McCoy, Phys. Rev. A 3, 2137 (1971) ADSCrossRefGoogle Scholar
  25. 25.
    T.R. de Oliveira, G. Rigolin, M.C. de Oliveira, E. Miranda, Phys. Rev. A 77, 032325 (2008) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Physics, Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations