The European Physical Journal B

, Volume 78, Issue 3, pp 359–365 | Cite as

Influence of the carbon substitution on the critical current density and AC losses in MgB2 single crystals

  • M. Ciszek
  • K. Rogacki
  • K. Oganisian
  • N. D. Zhigadlo
  • J. Karpinski


The DC magnetization and AC complex magnetic susceptibilities were measured for MgB2 single crystals, unsubstituted and carbon substituted with the composition of Mg(B0.94C0.05)2. The measurements were performed in AC and DC magnetic fields oriented parallel to the c-axis of the crystals. From the DC magnetization loops and the AC susceptibility measurements, critical current densities (J c were derived as a function of temperature and the DC and AC magnetic fields. Results show that the substitution with carbon decreases J c ) at low magnetic fields, opposite to the well known effect of an increase of J c at higher fields. AC magnetic losses were derived from the AC susceptibility data as a function of amplitude and the DC bias magnetic field. The AC losses were determined for temperatures of 0.6 and 0.7 of the transition temperature T c , so close to the boiling points of LH2 and LNe, potential cooling media for magnesium diboride based composites. The results are analyzed and discussed in the context of the critical state model.


Critical Current Density Critical State Model Carbon Substitution Demagnetization Factor Meissner State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001) CrossRefADSGoogle Scholar
  2. 2.
    T. Takenobu, T. Ito, Dam Hieu Chi, K. Prassides, Y. Iwasa, Phys. Rev. B 64, 134513 (2001) CrossRefADSGoogle Scholar
  3. 3.
    M. Pissas, S. Lee, A. Yamamoto, S. Tajima, Phys. Rev. Lett. 89, 097002 (2002) CrossRefADSGoogle Scholar
  4. 4.
    S. Lee, T. Masui, A. Yamamoto, H. Uchiyama, S. Tajima, Physica C 397, 7 (2003) CrossRefADSGoogle Scholar
  5. 5.
    R.H.T. Wilke, S.L. Bud’ko, P.C. Canfield, D.K. Finnemore, R.J. Suplinskas, S.T. Hannahs, Phys. Rev. Lett. 21, 217003 (2004) CrossRefADSGoogle Scholar
  6. 6.
    M. Pissas, D. Stamopoulos, S. Lee, S. Tajima, Phys. Rev. B 70, 134503 (2004) CrossRefADSGoogle Scholar
  7. 7.
    T. Masui, S. Lee, S. Tajima, Phys. Rev. B 70, 024504 (2004) CrossRefADSGoogle Scholar
  8. 8.
    S.M. Kazakov, R. Puźniak, K. Rogacki, A.V. Mironov, N.D. Zhigadlo, J. Jun, C. Soltmann, B. Batlogg, J. Karpinski, Phys. Rev. B 71, 024533 (2005) CrossRefADSGoogle Scholar
  9. 9.
    J. Karpinski, N.D. Zhigadlo, G. Schuck, S.M. Kazakov, B. Batlogg, K. Rogacki, R. Puźniak, J. Jun, E. Müller, P. Wägli, R.S. Gonnelli, D. Daghero, G.A. Ummarino, V.A. Stepanov, Phys. Rev. B 71, 174506 (2005) CrossRefADSGoogle Scholar
  10. 10.
    C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001) CrossRefADSGoogle Scholar
  11. 11.
    M. Eisterer, Supercond. Sci. Technol. 20, R47 (2007) CrossRefADSGoogle Scholar
  12. 12.
    Y. Bugoslavsky, L.F. Cohen, G.K. Perkins, M. Polichetti, T.J. Tate, R. Gwillam, A.D. Caplin, Nature 411, 561 (2001) CrossRefADSGoogle Scholar
  13. 13.
    M. Zehetmayer, C. Krutzler, M. Eisterer, J. Jun, S.M. Kazakov, J. Karpinski, H.W. Weber, Physica C 445–448, 65 (2006) CrossRefGoogle Scholar
  14. 14.
    M. Zehetmayer, M. Eisterer, J. Jun, S.M. Kazakov, J. Karpinski, A. Wiśniewski, H.W. Weber, Phys. Rev. B 66, 052505 (2002) CrossRefADSGoogle Scholar
  15. 15.
    M. Zehetmayer, M. Eisterer, J. Jun, S.M. Kazakov, J. Karpinski, B. Birajdar, O. Eibl, H.W. Weber, Phys. Rev. B 69, 054510 (2004) CrossRefADSGoogle Scholar
  16. 16.
    A. Wiśniewski, R. Puźniak, J. Judek, C. Krutzler, M. Eisterer, H.W. Weber, J. Jun, S.M. Kazakov, J. Karpiński, Supercond. Sci. Technol. 20, 256 (2007) CrossRefADSGoogle Scholar
  17. 17.
    K.H.P. Kim, W.N. Kang, M.S. Kim, C.U. Jung, H.J. Kim, E.M. Choi, M.S. Park, S.I. Lee, Physica C 370, 13 (2002) CrossRefADSGoogle Scholar
  18. 18.
    J. Karpinski, N.D. Zhigadlo, S. Katrych, R. Puźniak, K. Rogacki, R. Gonnelli, Physica C 456, 3 (2007) CrossRefADSGoogle Scholar
  19. 19.
    H.P. Wiesinger, F.M. Sauerzopf, H.W. Weber, Physica C 203, 121 (1992) CrossRefADSGoogle Scholar
  20. 20.
    P. Fabbricatore, S. Farinon, F. Gömöry, S. Innocenti, Supercond. Sci. Technol. 13, 1327 (2000) CrossRefADSGoogle Scholar
  21. 21.
    S.X. Dou, W.K. Yeoh, J. Horvat, M. Ionescu, Appl. Phys. Lett. 83, 4996 (2003) CrossRefADSGoogle Scholar
  22. 22.
    S.X. Dou, A.V. Pan, S. Zhou, M. Ionescu, H.K. Liu, P.R. Munroe, Supercond. Sci. Technol. 15, 1587 (2002) CrossRefADSGoogle Scholar
  23. 23.
    R.B. Goldfarb, M. Lelental, C.A. Thompson, in Magnetic Susceptibility of Superconductors and Other Spin Systems, edited by R.A. Hein et al. (Pienum, New York, 1991), p. 68 Google Scholar
  24. 24.
    E. Pardo, D.-X. Chen, A. Sanchez, C. Navau, Supercond. Sci. Technol. 17, 537 (2004) CrossRefADSGoogle Scholar
  25. 25.
    W.J. Carr Jr., AC loss and macroscopic theory of superconductors, 2nd edn. (London, Taylor & Francis, 2001) Google Scholar
  26. 26.
    E.H. Brandt, M. Indenbom, Phys. Rev. B 48, 12893 (1993) CrossRefADSGoogle Scholar
  27. 27.
    G. Giunchi, S. Ginocchio, S. Raineri, D. Botta, R. Gerbaldo, B. Minetti, R. Quarantiello, A. Matrone, IEEE Trans. Appl. Supercond. 15, 3230 (2005) CrossRefGoogle Scholar
  28. 28.
    Y. Yang, E.A. Young, M. Bianchetti, C. Beduz, E. Martinez, G. Giunchi, IEEE Trans. Appl. Supercond. 15, 2883 (2005) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Ciszek
    • 1
  • K. Rogacki
    • 1
  • K. Oganisian
    • 1
  • N. D. Zhigadlo
    • 2
  • J. Karpinski
    • 2
  1. 1.Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWrocławPoland
  2. 2.Solid State Physics LaboratoryZürichSwitzerland

Personalised recommendations