Skip to main content

Advertisement

Log in

First-principle study of the electronic structure and magnetism in RuSr2GdCu2O8 under pressure

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

We have performed a first-principle calculation of the structural, electronic and high pressure properties of RuSr2GdCu2O8, a ferromagnetic superconductor, by employing a full-potential linearized augmented plane-wave method within the density-functional theory. The effect of pressure was achieved by varying the volume of the unit cell with constant a:b:c ratio. The experimentally observed anti-phase rotation of RuO6 octahedra has been attributed to the residual forces on ORu which results in shear strain in the RuO2 layer. Partial charge analysis shows that applying pressure up to 6 GPa leads to hole creation in the CuO2 sheets which causes increase in the superconducting transition temperature. We have estimated the Curie temperature T M of this compound in the mean-field approximation using Heisenberg model with first-nearest neighbor exchange interactions determined from DFT calculations for parallel and anti-parallel spin configurations of Ru moment in RuO2 planes. The effect of pressure causes the magnetic moment of Ru atoms to decrease due to the increase of hybridization between the adjacent Ru atoms. The calculated exchange splitting in Cu d x 2 - y 2 states increases slightly with pressure but it is still very small that it does not affect superconductivity, and the hole doping mechanism is dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Bauernfeind, W. Widder, H.F. Braun, Physica C 254, 151 (1995)

    Article  ADS  Google Scholar 

  2. L. Bauernfeind, W. Widder, H.F. Braun, Phys. Rev. B 60, 7512 (1995)

    Google Scholar 

  3. O. Chmaissem, J.D. Jorgensen, H. Shaked, P. Dollar, J.L. Tallon, Phys. Rev. B 61, 6401 (2000)

    Article  ADS  Google Scholar 

  4. J.L. Tallon, J.W. Loram, G.V.M. Williams, C. Bernhard, Phys. Rev. B 61, R6471 (2000)

    Article  ADS  Google Scholar 

  5. P. Mandal, A. Hassen, J. Hemberger, A. Krimmel, A. Loidl, Phys. Rev. B 65, 144506 (2002)

    Article  ADS  Google Scholar 

  6. P.W. Klamut, B. Dabrowski, J. Mais, M. Maxwell, Physica C 350, 24 (2001)

    Article  ADS  Google Scholar 

  7. A. Khajehnezhad, N. Nikseresht, H. Hadipour, M. Akhavan, Eur. Phys. J. B 63, 461 (2008)

    Article  ADS  Google Scholar 

  8. N. Nikseresht, A. Khajehnezhad, H. Hadipour, M. Akhavan, Physica C 470, 285 (2009)

    Article  ADS  Google Scholar 

  9. B. Lorenz, R.L. Meng, Y.Y. Xue, C.W. Chu, Physica C 383, 337 (2003)

    Article  ADS  Google Scholar 

  10. K. Nakamura, K.T. Park, A.J. Freeman, J.D. Jorgensen, Phys. Rev. B 63, 024507 (2000)

    Article  ADS  Google Scholar 

  11. W.E. Pickett, R. Weht, A.B. Shick, Phys. Rev. Lett. 83, 3713 (1999)

    Article  ADS  Google Scholar 

  12. K. Schwarz, P. Blaha, Comput. Mater. Sci. 28, 259 (2003)

    Article  Google Scholar 

  13. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  14. O.I. Lebedev, G. Van Tendeloo, J.P. Attfield, A.C. Mclaughlin, Phys. Rev. B 73, 224524 (2006)

    Article  ADS  Google Scholar 

  15. A.C. McLaughlin, W. Zhou, J.P. Attfield, A.N. Fitch, J.L. Tallon, Phys. Rev. B 60, 7512 (1999)

    Article  ADS  Google Scholar 

  16. G. Oomi et al., J. Phys.: Condens. Matter 14, 10747 (2002)

    Article  ADS  Google Scholar 

  17. J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, J.D. Jorgensen, Phys. Rev. B 51, 12911 (1995)

    Article  ADS  Google Scholar 

  18. M. Presland, J.L. Tallon, R. Buckley, R. Liu, N. Flower, Physica C 176, 95 (1991)

    Article  ADS  Google Scholar 

  19. G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64, 195134 (2001)

    Article  ADS  Google Scholar 

  20. E. Casini, M. Kempf, J. Krmer, H.F. Braun, J. Phys.: Condens. Matter 21, 254210 (2009)

    Article  ADS  Google Scholar 

  21. Ph. Kurz, G. Bihlmayer, S. Blügel, J. Phys.: Condens. Matter 14, 6353 (2002)

    Article  ADS  Google Scholar 

  22. H. Hadipour, M. Akhavan, J. Solid State Chem. 183, 1678 (2010)

    Article  ADS  Google Scholar 

  23. H. Hadipour, S. Fallahi, M. Akhavan, submitted to J. Solid State Chem. (2010)

  24. H. Hadipour, M. Akhavan, submitted to New J. Phys. (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akhavan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallahi, S., Hadipour, H. & Akhavan, M. First-principle study of the electronic structure and magnetism in RuSr2GdCu2O8 under pressure. Eur. Phys. J. B 78, 531–534 (2010). https://doi.org/10.1140/epjb/e2010-10601-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10601-3

Keywords

Navigation