Advertisement

The European Physical Journal B

, Volume 78, Issue 4, pp 531–534 | Cite as

First-principle study of the electronic structure and magnetism in RuSr2GdCu2O8 under pressure

Article

Abstract.

We have performed a first-principle calculation of the structural, electronic and high pressure properties of RuSr2GdCu2O8, a ferromagnetic superconductor, by employing a full-potential linearized augmented plane-wave method within the density-functional theory. The effect of pressure was achieved by varying the volume of the unit cell with constant a:b:c ratio. The experimentally observed anti-phase rotation of RuO6 octahedra has been attributed to the residual forces on ORu which results in shear strain in the RuO2 layer. Partial charge analysis shows that applying pressure up to 6 GPa leads to hole creation in the CuO2 sheets which causes increase in the superconducting transition temperature. We have estimated the Curie temperature T M of this compound in the mean-field approximation using Heisenberg model with first-nearest neighbor exchange interactions determined from DFT calculations for parallel and anti-parallel spin configurations of Ru moment in RuO2 planes. The effect of pressure causes the magnetic moment of Ru atoms to decrease due to the increase of hybridization between the adjacent Ru atoms. The calculated exchange splitting in Cu d x 2 - y 2 states increases slightly with pressure but it is still very small that it does not affect superconductivity, and the hole doping mechanism is dominant.

Keywords

Generalize Gradient Approximation Cooper Pair Pressure Derivative Hole Doping Exchange Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bauernfeind, W. Widder, H.F. Braun, Physica C 254, 151 (1995) CrossRefADSGoogle Scholar
  2. 2.
    L. Bauernfeind, W. Widder, H.F. Braun, Phys. Rev. B 60, 7512 (1995) Google Scholar
  3. 3.
    O. Chmaissem, J.D. Jorgensen, H. Shaked, P. Dollar, J.L. Tallon, Phys. Rev. B 61, 6401 (2000) CrossRefADSGoogle Scholar
  4. 4.
    J.L. Tallon, J.W. Loram, G.V.M. Williams, C. Bernhard, Phys. Rev. B 61, R6471 (2000) CrossRefADSGoogle Scholar
  5. 5.
    P. Mandal, A. Hassen, J. Hemberger, A. Krimmel, A. Loidl, Phys. Rev. B 65, 144506 (2002) CrossRefADSGoogle Scholar
  6. 6.
    P.W. Klamut, B. Dabrowski, J. Mais, M. Maxwell, Physica C 350, 24 (2001) CrossRefADSGoogle Scholar
  7. 7.
    A. Khajehnezhad, N. Nikseresht, H. Hadipour, M. Akhavan, Eur. Phys. J. B 63, 461 (2008) CrossRefADSGoogle Scholar
  8. 8.
    N. Nikseresht, A. Khajehnezhad, H. Hadipour, M. Akhavan, Physica C 470, 285 (2009) CrossRefADSGoogle Scholar
  9. 9.
    B. Lorenz, R.L. Meng, Y.Y. Xue, C.W. Chu, Physica C 383, 337 (2003) CrossRefADSGoogle Scholar
  10. 10.
    K. Nakamura, K.T. Park, A.J. Freeman, J.D. Jorgensen, Phys. Rev. B 63, 024507 (2000) CrossRefADSGoogle Scholar
  11. 11.
    W.E. Pickett, R. Weht, A.B. Shick, Phys. Rev. Lett. 83, 3713 (1999) CrossRefADSGoogle Scholar
  12. 12.
    K. Schwarz, P. Blaha, Comput. Mater. Sci. 28, 259 (2003) CrossRefGoogle Scholar
  13. 13.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  14. 14.
    O.I. Lebedev, G. Van Tendeloo, J.P. Attfield, A.C. Mclaughlin, Phys. Rev. B 73, 224524 (2006) CrossRefADSGoogle Scholar
  15. 15.
    A.C. McLaughlin, W. Zhou, J.P. Attfield, A.N. Fitch, J.L. Tallon, Phys. Rev. B 60, 7512 (1999) CrossRefADSGoogle Scholar
  16. 16.
    G. Oomi et al., J. Phys.: Condens. Matter 14, 10747 (2002) CrossRefADSGoogle Scholar
  17. 17.
    J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, J.D. Jorgensen, Phys. Rev. B 51, 12911 (1995) CrossRefADSGoogle Scholar
  18. 18.
    M. Presland, J.L. Tallon, R. Buckley, R. Liu, N. Flower, Physica C 176, 95 (1991) CrossRefADSGoogle Scholar
  19. 19.
    G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64, 195134 (2001) CrossRefADSGoogle Scholar
  20. 20.
    E. Casini, M. Kempf, J. Krmer, H.F. Braun, J. Phys.: Condens. Matter 21, 254210 (2009) CrossRefADSGoogle Scholar
  21. 21.
    Ph. Kurz, G. Bihlmayer, S. Blügel, J. Phys.: Condens. Matter 14, 6353 (2002) CrossRefADSGoogle Scholar
  22. 22.
    H. Hadipour, M. Akhavan, J. Solid State Chem. 183, 1678 (2010) CrossRefADSGoogle Scholar
  23. 23.
    H. Hadipour, S. Fallahi, M. Akhavan, submitted to J. Solid State Chem. (2010) Google Scholar
  24. 24.
    H. Hadipour, M. Akhavan, submitted to New J. Phys. (2010) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Magnet Research Laboratory (MRL)TehranIran

Personalised recommendations