Advertisement

The European Physical Journal B

, Volume 79, Issue 2, pp 185–195 | Cite as

Magnetic and transport properties of transition-metal implanted ZnO single crystals

  • R. P. Borges
  • B. Ribeiro
  • A. R.G. Costa
  • C. Silva
  • R. C. da Silva
  • G. Evans
  • A. P. Gonçalves
  • M. M. Cruz
  • M. Godinho
Article

Abstract.

ZnO single crystals were implanted with Mn, Co and Ni with fluences between 1 × 1016 cm-2 and 1 × 1017 cm-2 and energy of 200 keV. Results indicate that aggregation of transition metal ions in the as implanted state occurs only in the case of Ni. After an annealing stage to recover the ZnO structure aggregation occurs for the higher fluences of all implanted species. For lower concentrations paramagnetic behaviour with magnetic moments close to those of individual ions is observed. No polarised impurity band is formed as a result of the presence of transition metal ions and all samples show electrical conduction by carriers in extended states of ZnO. Significant values of magnetoresistance are measured at low temperatures, where electrical transport is described by hopping mechanisms between localized states. The sign of the magnetoresistance is dependent of the doping ion and is correlated with the observed aggregation.

Keywords

Superparamagnetic Behaviour Paramagnetic Behaviour Particle Magnetic Moment High Density Magnetic Recording Medium Rump Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Dietl, H. Ohno, M. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    R. Janisch, P. Gopal, N.A. Spaldin, J. Phys.: Condens. Matter 17, R657 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    G.V. Lashkarev, M.V. Radchenko, V. Karpina, V. Sichkovskyi, Low Temp. Phys. 33, 165 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    S.J. Pearton, D.P. Norton, M.P. Ivill, A.F. Hebard, J.M. Zavada, W.M. Chen, I.A. Buyanova, IEEE Trans. Electron Devices 54, 1040 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    T.C. Kaspar, T. Droubay, S.M. Heald, P. Nachimuthu, C.M. Wang, V. Shutthanandan, C.A. Johnson, D.R. Gamelin, S.A. Chambers, New J. Phys. 10, 055010 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    A. Ney, M. Opel, T.C. Kaspar, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, S. Bauer, K.-W. Nielsen, S.T.B. Goennenwein, M.H. Engelhard, S. Zhou, K. Potzger, J. Simon, W. Mader, S.M. Head, J.C. Cezar, F. Wilhelm, A. Rogalev, R. Gross, S.A. Chambers, New J. Phys. 12, 013020 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    M. Opel, K.-W. Nielsen, S. Bauer, S.T.B. Goennenwein, J.C. Cezar, D. Schmeisser, J. Simon, W. Mader, R. Gross, Eur. Phys. J. B 63, 437 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    N.A. Theodoropoulou, A.F. Hebard, D.P. Norton, J.D. Budai, L.A. Boatner, J.S. Lee, Z.G. Khim, Y.D. Park, M.E. Overberg, S.J. Pearton, R.G. Wilson, Solid State Electron. 47, 2231 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    G. Brauer, W. Anwand, W. Skorupa, H. Schmidt, M. Diaconu, M. Lorenz, M. Grundmann, Superlattices Microstruct. 39, 41 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    D.H. Hill, D.A. Arena, R.A. Bartynski, P. Wu, G. Saraf, Y. Lu, L. Wielunski, R. Gateau, J. Dvorak, A. Moodenbaugh, Yung Kee Yeo, Phys. Stat. Sol. A 203, 3836 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    K. Potzger, S. Zhou, H. Reuther, A. Mücklich, F. Eichhorn, N. Schell, W. Skorupa, M. Helm, J. Fassbender, T. Herrmannsdörfer, T.P. Papageorgiou, Appl. Phys. Lett. 88, 052508 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    B. Angadi, Y.S. Jung, W.-K. Choi, R. Kumar, K. Jeong, S.W. Shin, J.H. Lee, J.H. Song, M. Wasi Khan, J.P. Srivastava, Appl. Phys. Lett. 88, 142502 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    R.P. Borges, J.V. Pinto, R.C. da Silva, A.P. Gonçalves, M.M. Cruz, M. Godinho, J. Magn. Magn. Mater. 316, e191 (2007) Google Scholar
  14. 14.
    V. Avrutin, Ü. Özgür, S. Chevtchenko, C. Litton, H. Morkoç, J. Electronic. Mater. 36, 483 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    S. Ghosh, D. Kanjilal, B. Pandey, M. Saurav, P. Kumar, Radiat. Eff. Defects Solids 163, 215 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    N. Akdogan, H. Zabel, A. Nefedov, K. Westerholt, H.-W. Becker, S. Gök, R. Khaibullin, L. Tagirov, J. Appl. Phys. 105, 043907 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    S. Zhou, K. Potzger, J. Von Borany, R. Grötzschel, W. Skorupa, M. Helm, J. Fassbender, Phys. Rev. B 77, 035209 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    S. Zhou, K. Potzger, G. Talut, J. von Borany, W. Skorupa, M. Helm, J. Fassbender, J. Appl. Phys. 103, 07D530 (2008) Google Scholar
  19. 19.
    M. Schumm, M. Koerdel, S. Müller, C. Ronning, E. Dynowska, Z. Golacki, W. Szuszkiewicz, J. Geurts, J. Appl. Phys. 105, 083525 (2009) ADSCrossRefGoogle Scholar
  20. 20.
    L.G. Jacobsohn, M.E. Hawley, D.W. Cooke, M.F. Hundley, J.D. Thompson, R.K. Schulze, M. Nastasi, J. Appl. Phys. 96, 4444 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    K. Sun, S. Zhu, R. Fromknecht, G. Linker, L.M. Wang, Mater. Lett. 58, 547 (2004) MATHCrossRefGoogle Scholar
  22. 22.
    H. Wang, Y. Takeda, N. Umeda, K. Kono, N. Kishimoto, Nucl. Instr. Meth. Phys. Res. B 257, 20 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    J.-P. Wang, Proc. IEEE 96, 1847 (2008) CrossRefGoogle Scholar
  24. 24.
    J. Barnás, I. Weymann, J. Phys.: Condens. Matter 20, 423202 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    K. Lorenz, E. Alves, E. Wendler, O. Bilani, W. Wesch, M. Hayes, Appl. Phys. Lett. 87, 191904 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    L.R. Doolittle, Nucl. Instrum. Methods B 9, 344 (1985) ADSCrossRefGoogle Scholar
  27. 27.
    L.R. Doolittle, Nucl. Instrum. Methods B 15, 227 (1986), http://www.genplot.com/ ADSCrossRefGoogle Scholar
  28. 28.
    D. Korakakis, K.F. Ludwig, Jr, T.D. Moustakas, Appl. Phys. Lett. 71, 72 (1997) ADSCrossRefGoogle Scholar
  29. 29.
    J.V. Pinto, M.M. Cruz, R.C. da Silva, E. Alves, R. González, M. Godinho, Eur. Phys. J. B 45, 331 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    B.I. Shklovski, A.L. Efros, Electronic properties of doped semiconductors (Springer-Verlag, Berlin, Heidelberg, 1984) Google Scholar
  31. 31.
    J. Nogués, V. Skumryev, J. Sort, S. Stoyanov, D. Givord, Phys. Rev. Lett. 97, 157203 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    A.C. Johnston-Peck, J. Wang, J.B. Tracy, ACS Nano 3, 1077 (2009) CrossRefGoogle Scholar
  33. 33.
    K. Potzger, S. Zhou, H. Reuther, K. Kuepper, G. Talut, M. Helm, J. Fassbender, J.D. Denlinger, Appl. Phys. Lett. 91, 062107 (2007) ADSCrossRefGoogle Scholar
  34. 34.
    K. Potzger, K. Kuepper, Q. Xu, S. Zhou, H. Schmidt, M. Helm, J. Fassbender, J. Appl. Phys. 104, 023510 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    H. Morkoç, Ü. Özgür, Zinc Oxide (Wiley-VCH Verlag GmbH & Co., 2009) Google Scholar
  36. 36.
    C. Knies, M.T. Elm, P.J. Klar, J. Stehr, D.M. Hofmann, N. Romanov, T. Kammermeier, A. Ney, J. Appl. Phys. 105, 073918 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    S. Ye, V. Ney, T. Kammermeier, K. Ollefs, S. Zhou, H. Schmidt, F. Wilhelm, A. Rogalev, A. Ney, Phys. Rev. B 80, 245321 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • R. P. Borges
    • 1
  • B. Ribeiro
    • 1
  • A. R.G. Costa
    • 1
  • C. Silva
    • 1
  • R. C. da Silva
    • 2
    • 3
  • G. Evans
    • 1
    • 4
  • A. P. Gonçalves
    • 1
    • 5
  • M. M. Cruz
    • 1
    • 4
  • M. Godinho
    • 1
    • 4
  1. 1.Centro de Física da Matéria Condensada da Universidade de LisboaLisboaPortugal
  2. 2.Departamento de Física, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  3. 3.Laboratório de Feixe de Iões, Dep. FísicaInstituto Tecnológico e NuclearSacavémPortugal
  4. 4.Centro de Física Nuclear da Universidade de LisboaLisboaPortugal
  5. 5.Departamento de QuímicaInstituto Tecnológico e NuclearSacavémPortugal

Personalised recommendations