Skip to main content
Log in

Evolving hypernetwork model

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Complex hypernetworks are ubiquitous in real-life systems. While a substantial body of previous research has only focused on the applications of hypernetworks, relatively little work has investigated the evolving models of hypernetworks. Considering the formations of many real world networks, we propose two evolving mechanisms of the hyperedge growth and the hyperedge preferential attachment, then construct an evolving hypernetwork model. We introduce some basic topological quantities, such as a variety of degree distributions, clustering coefficients as well as average path length. We numerically investigate these quantities in the limit of large hypernetwork size and find that our hypernetwork model shares similar qualitative features with the majority of complex networks that have been previously studied, such as the scale-free property of the degree distribution and a high degree of clustering, as well as the small-world property. It is expected that our attempt in the hypernetwork model can bring the upsurge in the study of the hypernetwork model in further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  2. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  3. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  Google Scholar 

  4. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. S.H. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  6. M. Faloutsos, P. Faloutsos, C. Faloutsos, Comp. Commun. Rev. 29, 252 (1999)

    Google Scholar 

  7. R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130 (1999)

    Article  ADS  Google Scholar 

  8. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature 407, 651 (2000)

    Article  ADS  Google Scholar 

  9. H. Jeong, S. Mason, A.-L. Barabási, Z.N. Oltvai, Nature 411, 41 (2001)

    Article  ADS  Google Scholar 

  10. M.E.J. Newman, Proc. Natl. Acad. Sci. U.S.A. 98, 404 (2001)

    Article  MATH  ADS  Google Scholar 

  11. F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, Y. Aberg, Nature 411, 907 (2001)

    Article  ADS  Google Scholar 

  12. X. Li, G. Chen, Physica A 328, 274 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Z.Z. Zhang, L.L. Rong, S.G. Zhou, Phys. Rev. E 74, 046105 (2006)

    Article  ADS  Google Scholar 

  14. Z.Z. Zhang, S.G. Zhou, L.J. Fang, J.H. Guan, Y.C. Zhang, EPL 79, 38007 (2007)

    Article  ADS  Google Scholar 

  15. T. Zhou, J. Ren, M. Medo, Y.-C. Zhang, Phys. Rev. E 76, 046115 (2007)

    Article  ADS  Google Scholar 

  16. E. Estrada, J.A. Rodríguez-Velázquez, Physica A 364, 581 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. B.D. Mariano, A.P. Mason, P.O. Jukka, e-print arXiv: 0906. 4675v2

  18. P. Zhang, M.H. Li, J.F.F. Mendes, Z.R. Di, Y. Fan, e-print arXiv: 0804. 3854v1

  19. G. Ghoshal, V. Zlatić, G. Caldarelli, M.E.J. Newman, Phys. Rev. E 79, 066118 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  20. V. Zlatić, G. Ghoshal, G. Caldarelli, Phys. Rev. E 80, 036118 (2009)

    Article  ADS  Google Scholar 

  21. P. Holme, F. Liljeros, C.R. Edling, B.J. Kim, Phys. Rev. E 68, 056107 (2003)

    Article  ADS  Google Scholar 

  22. R. Lambiotte, M. Ausloos, Phys. Rev. E 72, 066117 (2005)

    Article  ADS  Google Scholar 

  23. J.J. Ramasco, S.N. Dorogovtsev, R. Pastor-Satorras, Phys. Rev. E 70, 036106 (2004)

    Article  ADS  Google Scholar 

  24. K. Sneppen, M. Rosvall, A. Trusina, P. Minnhagen, Europhys. Lett. 67, 349 (2004)

    Article  ADS  Google Scholar 

  25. F. Peruani, M. Choudhury, A. Mukherjee, N. Ganguly, EPL 79, 28001 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. C. Cattuto, C. Schmitz, A. Baldassarri, V.D.P. Servedio, V. Loreto, A. Hotho, M. Grahl, G. Stumme, AI Comm. 20, 245 (2007)

    MathSciNet  Google Scholar 

  27. R. Lambiotte, M. Ausloos, Lect. Notes Comput. Sci. 3993, 1114 (2006)

    Article  Google Scholar 

  28. G. Palla, I.J. Farkas, P. Pollnet, I. Derényi, T. Vicsek, New J. Phys. 10, 123026 (2008)

    Article  ADS  Google Scholar 

  29. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)

    Article  ADS  Google Scholar 

  30. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)

    Article  ADS  Google Scholar 

  31. M.E.J. Newman, Phys. Rev. E 64, 016131 (2001)

    Article  ADS  Google Scholar 

  32. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JW., Rong, LL., Deng, QH. et al. Evolving hypernetwork model. Eur. Phys. J. B 77, 493–498 (2010). https://doi.org/10.1140/epjb/e2010-00297-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00297-8

Keywords

Navigation