Advertisement

The European Physical Journal B

, Volume 77, Issue 4, pp 493–498 | Cite as

Evolving hypernetwork model

  • Jian-Wei Wang
  • Li-Li Rong
  • Qiu-Hong Deng
  • Ji-Yong Zhang
Article

Abstract.

Complex hypernetworks are ubiquitous in real-life systems. While a substantial body of previous research has only focused on the applications of hypernetworks, relatively little work has investigated the evolving models of hypernetworks. Considering the formations of many real world networks, we propose two evolving mechanisms of the hyperedge growth and the hyperedge preferential attachment, then construct an evolving hypernetwork model. We introduce some basic topological quantities, such as a variety of degree distributions, clustering coefficients as well as average path length. We numerically investigate these quantities in the limit of large hypernetwork size and find that our hypernetwork model shares similar qualitative features with the majority of complex networks that have been previously studied, such as the scale-free property of the degree distribution and a high degree of clustering, as well as the small-world property. It is expected that our attempt in the hypernetwork model can bring the upsurge in the study of the hypernetwork model in further.

Keywords

Complex Network Degree Distribution Node Degree Topological Characteristic Preferential Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998) CrossRefADSGoogle Scholar
  2. 2.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999) CrossRefMathSciNetGoogle Scholar
  3. 3.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002) CrossRefADSGoogle Scholar
  4. 4.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S.H. Strogatz, Nature 410, 268 (2001) CrossRefADSGoogle Scholar
  6. 6.
    M. Faloutsos, P. Faloutsos, C. Faloutsos, Comp. Commun. Rev. 29, 252 (1999) Google Scholar
  7. 7.
    R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130 (1999) CrossRefADSGoogle Scholar
  8. 8.
    H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature 407, 651 (2000) CrossRefADSGoogle Scholar
  9. 9.
    H. Jeong, S. Mason, A.-L. Barabási, Z.N. Oltvai, Nature 411, 41 (2001) CrossRefADSGoogle Scholar
  10. 10.
    M.E.J. Newman, Proc. Natl. Acad. Sci. U.S.A. 98, 404 (2001) MATHCrossRefADSGoogle Scholar
  11. 11.
    F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, Y. Aberg, Nature 411, 907 (2001) CrossRefADSGoogle Scholar
  12. 12.
    X. Li, G. Chen, Physica A 328, 274 (2003) MATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    Z.Z. Zhang, L.L. Rong, S.G. Zhou, Phys. Rev. E 74, 046105 (2006) CrossRefADSGoogle Scholar
  14. 14.
    Z.Z. Zhang, S.G. Zhou, L.J. Fang, J.H. Guan, Y.C. Zhang, EPL 79, 38007 (2007) CrossRefADSGoogle Scholar
  15. 15.
    T. Zhou, J. Ren, M. Medo, Y.-C. Zhang, Phys. Rev. E 76, 046115 (2007) CrossRefADSGoogle Scholar
  16. 16.
    E. Estrada, J.A. Rodríguez-Velázquez, Physica A 364, 581 (2006) CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    B.D. Mariano, A.P. Mason, P.O. Jukka, e-print arXiv: 0906. 4675v2 Google Scholar
  18. 18.
    P. Zhang, M.H. Li, J.F.F. Mendes, Z.R. Di, Y. Fan, e-print arXiv: 0804. 3854v1 Google Scholar
  19. 19.
    G. Ghoshal, V. Zlatić, G. Caldarelli, M.E.J. Newman, Phys. Rev. E 79, 066118 (2009) CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    V. Zlatić, G. Ghoshal, G. Caldarelli, Phys. Rev. E 80, 036118 (2009) CrossRefADSGoogle Scholar
  21. 21.
    P. Holme, F. Liljeros, C.R. Edling, B.J. Kim, Phys. Rev. E 68, 056107 (2003) CrossRefADSGoogle Scholar
  22. 22.
    R. Lambiotte, M. Ausloos, Phys. Rev. E 72, 066117 (2005) CrossRefADSGoogle Scholar
  23. 23.
    J.J. Ramasco, S.N. Dorogovtsev, R. Pastor-Satorras, Phys. Rev. E 70, 036106 (2004) CrossRefADSGoogle Scholar
  24. 24.
    K. Sneppen, M. Rosvall, A. Trusina, P. Minnhagen, Europhys. Lett. 67, 349 (2004) CrossRefADSGoogle Scholar
  25. 25.
    F. Peruani, M. Choudhury, A. Mukherjee, N. Ganguly, EPL 79, 28001 (2007) CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    C. Cattuto, C. Schmitz, A. Baldassarri, V.D.P. Servedio, V. Loreto, A. Hotho, M. Grahl, G. Stumme, AI Comm. 20, 245 (2007) MathSciNetGoogle Scholar
  27. 27.
    R. Lambiotte, M. Ausloos, Lect. Notes Comput. Sci. 3993, 1114 (2006) CrossRefGoogle Scholar
  28. 28.
    G. Palla, I.J. Farkas, P. Pollnet, I. Derényi, T. Vicsek, New J. Phys. 10, 123026 (2008) CrossRefADSGoogle Scholar
  29. 29.
    S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000) CrossRefADSGoogle Scholar
  30. 30.
    M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004) CrossRefADSGoogle Scholar
  31. 31.
    M.E.J. Newman, Phys. Rev. E 64, 016131 (2001) CrossRefADSGoogle Scholar
  32. 32.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006) CrossRefMathSciNetADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jian-Wei Wang
    • 1
    • 2
  • Li-Li Rong
    • 2
  • Qiu-Hong Deng
    • 2
  • Ji-Yong Zhang
    • 2
  1. 1.School of Business Administration, Northeastern UniversityShenyangP.R. China
  2. 2.Institute of Systems Engineering, Dalian University of TechnologyDalianP.R. China

Personalised recommendations