Advertisement

The European Physical Journal B

, Volume 77, Issue 3, pp 413–417 | Cite as

von Neumann entropy signatures of a transition in one-dimensional electron systems with long-range correlated disorder

Solid State and Materials

Abstract.

We study the von Neumann entropy and related quantities in one-dimensional electron systems with on-site long-range correlated potentials. The potentials are characterized by a power-law power spectrum S(k) \(\propto\) 1/k α, where α is the correlation exponent. We find that the first-order derivative of spectrum-averaged von Neumann entropy is maximal at a certain correlation exponent α m for a finite system, and has perfect finite-size scaling behaviors around α m . It indicates that the first-order derivative of the spectrum-averaged von Neumann entropy has singular behavior, and α m can be used as a signature for transition points. For the infinite system, the threshold value α c = 1.465 is obtained by extrapolating α m .

Keywords

System Size Scaling Behavior Singular Behavior Amico Energy Level Statistic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008) CrossRefADSGoogle Scholar
  2. 2.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958) CrossRefADSGoogle Scholar
  3. 3.
    F.A.B.F. de Moura, M.L. Lyra, Phys. Rev. Lett. 81, 3735 (1998) CrossRefADSGoogle Scholar
  4. 4.
    P. Carpena, P. Bernaola-Galván, P.Ch. Ivanov, Phys. Rev. Lett. 93, 176804 (2004) CrossRefADSGoogle Scholar
  5. 5.
    E. Díaz, F. Domínguez-Adame, Phys. Rev. B 77, 134201 (2008) CrossRefADSGoogle Scholar
  6. 6.
    S. Nishino, K. Yakubo, H. Shima, Phys. Rev. B 79, 033105 (2009) CrossRefADSGoogle Scholar
  7. 7.
    S. Russ, J.W. Kantelhardt, A. Bunde, S. Havlin, Phys. Rev. B 64, 134209 (2001) CrossRefADSGoogle Scholar
  8. 8.
    P. Carpena, P. Bernaola-Galván, P.Ch. Ivanov, H.E. Stanley, Nature (London) 418, 955 (2002) CrossRefADSGoogle Scholar
  9. 9.
    H. Yamada, Phys. Rev. B 69, 014205 (2004) CrossRefADSGoogle Scholar
  10. 10.
    T. Kaya, Eur. Phys. J. B 60, 313 (2007) CrossRefADSGoogle Scholar
  11. 11.
    T. Kaya, Eur. Phys. J. B 65, 49 (2008) CrossRefADSGoogle Scholar
  12. 12.
    A. Esmailpour, M. Esmaeilzadeh, E. Faizabadi, P. Carpena, M.R. Rahimi Tabar, Phys. Rev. B 74, 024206 (2006) CrossRefADSGoogle Scholar
  13. 13.
    See, for example, The Physics of Quantum Information, edited by D. Bouwmeester, A. Ekert, A. Zeilinger (Springer, Berlin, 2000) Google Scholar
  14. 14.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009) CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature (London) 416, 608 (2002) CrossRefADSGoogle Scholar
  16. 16.
    S.Q. Su, J.L. Song, S.J. Gu, Phys. Rev. A 74, 032308 (2006) CrossRefADSGoogle Scholar
  17. 17.
    J.P. Cao, X.L. Cui, Z. Qi, W.G. Lu, Q. Niu, Y.P. Wang, Phys. Rev. B 75, 172401 (2007) CrossRefADSGoogle Scholar
  18. 18.
    L.Y. Gong, P.Q. Tong, Phys. Rev. E 74, 056103 (2006) CrossRefADSGoogle Scholar
  19. 19.
    L.Y. Gong, P.Q. Tong, Phys. Rev. B 76, 085121 (2007) CrossRefADSGoogle Scholar
  20. 20.
    L.Y. Gong, P.Q. Tong, Phys. Rev. B 78, 115114 (2008) CrossRefADSGoogle Scholar
  21. 21.
    L.Y. Gong, P.Q. Tong, Phys. Rev. B 80, 174205 (2009) CrossRefADSGoogle Scholar
  22. 22.
    P. Zanardi, Phys. Rev. A 65, 042101 (2002) CrossRefMathSciNetADSGoogle Scholar
  23. 23.
    S.J. Gu, S.S. Deng, Y.Q. Li, H.Q. Lin, Phys. Rev. Lett. 93, 086402 (2004) CrossRefADSGoogle Scholar
  24. 24.
    F. Mintert, A.M. Rey, I.I. Satija, C.W. Clark, Europhys. Lett. 86, 17003 (2009) CrossRefADSGoogle Scholar
  25. 25.
    V. Popkov, M. Salerno, Europhys. Lett. 84, 30007 (2008) CrossRefADSGoogle Scholar
  26. 26.
    L. Amico, D. Patanè, Europhys. Lett. 77, 17001 (2007) CrossRefADSGoogle Scholar
  27. 27.
    C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996) CrossRefADSGoogle Scholar
  28. 28.
    In practice, εβ is the average values over a small window Δ around an energy value E, i.e., Eβ ∈ [E-Δ/2, E+Δ/2]. We ensure that Δ is sufficiently small, and at the same time there are enough states in the interval Δ. Here Δ = 0.04 is chosen and other Δ give similar results Google Scholar
  29. 29.
    R.J. Bell, P. Dean, Discuss. Faraday Soc. 50, 55 (1970) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Center of Optofluidic Technology, College of Science, Nanjing University of Posts and TelecommunicationsNanjingTaiwan
  2. 2.Department of PhysicsTamkang UniversityTaipeiTaiwan
  3. 3.Department of PhysicsNanjing Normal UniversityNanjingTaiwan

Personalised recommendations