The European Physical Journal B

, Volume 76, Issue 2, pp 237–249 | Cite as

The Geyser effect in the expansion of solid helium into vacuum

  • G. Benedek
  • P. Nieto
  • J. P. Toennies
Solid State and Materials


The mechanism behind the intensity oscillations accompanying the flow of solid helium through a micron-sized orifice into vacuum, called the geyser effect, is investigated by measuring the pressure pulses at various locations in the entire flow system. The new results reveal that the source chamber pressure pulses have the same shape as the external detector pulses monitored in the previous experiments [G. Benedek et al., Phys. Rev. Lett. 95, 095301 (2005)]. New experiments in which the external gas reservoir is isolated from the pressure regulator provide direct information on the mechanism of the collapse leading to the geyser pulses. Thus each geyser pulse is triggered by the breakdown of a plug located upstream of the source chamber. The flow of liquid through the orifice determines the shape of the subsequent geyser pulse.


Reservoir Pressure Inlet Tube Source Pressure Pitot Tube Feed Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Kim, M.H.W. Chan, Nature 427, 225 (2004) CrossRefADSGoogle Scholar
  2. 2.
    E. Kim, M.H.W. Chan, Science 305, 1941 (2004) CrossRefADSGoogle Scholar
  3. 3.
    J. Day, J. Beamish, Nature 450, 853 (2007) CrossRefADSGoogle Scholar
  4. 4.
    M.W. Ray, R.B. Hallock, Phys. Rev. Lett. 100, 235301 (2008) CrossRefADSGoogle Scholar
  5. 5.
    X. Lin, A.C. Clark, Z.G. Cheng, M.H.W. Chan, Phys. Rev. Lett. 102, 125302 (2009) CrossRefADSGoogle Scholar
  6. 6.
    D.E. Galli, L. Reatto, J. Phys. Soc. J. 77, 111010 (2008) CrossRefADSGoogle Scholar
  7. 7.
    S. Balibar, F. Caupin, J. Phys. Condens. Matter 20, 173201 (2008) CrossRefADSGoogle Scholar
  8. 8.
    J. Saunders, Science 324, 601 (2009) CrossRefGoogle Scholar
  9. 9.
    G. Benedek, F. Dalfovo, R. Grisenti, M. Käsz, J.P. Toennies, Phys. Rev. Lett. 95, 095301 (2005) CrossRefADSGoogle Scholar
  10. 10.
    G. Benedek, R. Grisenti, J.P. Toennies, F. Dalfovo, J. Electron. Spectrosc. Relat. Phenom. 129, 201 (2003) CrossRefGoogle Scholar
  11. 11.
    National Aperture, Inc, 16 Northwestern Drive, Salem, NH 03079 USA Google Scholar
  12. 12.
    Kistler Instruments (8408 Winterthur, Switzerland) high pressure quarz sensor type 601A with charge amplifier model 5015A Google Scholar
  13. 13.
    Kistler Instruments (8408 Winterthur, Switzerland) piezoresistive absolute pressure sensor type 4073A100 and piezoresistive amplifier model 4601A Google Scholar
  14. 14.
    E.R. Grilly, J. Low Temp. Phys. 11, 33 (1972) CrossRefADSGoogle Scholar
  15. 15.
    I. Iwasa, K. Araki, H. Suzuki J. Phys. Soc. Jpn 46, 1119 (1979) CrossRefADSGoogle Scholar
  16. 16.
    cL was set equal to the value of c33 from ultrasonic measurements by R.H. Crepeau, O. Heybey, D.M. Lee, S.A. Strauss, Phys. Rev. A 3, 1162 (1971 ) Google Scholar
  17. 17.
    B.N.J. Persson, Sliding Friction (Springer, 1998), p. 150, Figure 7.39(f) Google Scholar
  18. 18.
    G. Benedek, A. Kalinin, P. Nieto, J.P. Toennies, to be published Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Donostia International Physics CenterDonostia - San SebastiànSpain
  2. 2.Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadridSpain
  3. 3.Max-Planck Institute for Dynmics and Self-OrganizationGöttingenGermany
  4. 4.Dipartimento di Scienza dei MaterialiUniversità di Milano-BicoccaMilanoItaly

Personalised recommendations