Advertisement

The European Physical Journal B

, Volume 75, Issue 4, pp 511–525 | Cite as

Ferromagnetism without flat bands in thin armchair nanoribbons

  • R. Trencsényi
  • Z. Gulácsi
Mesoscopic and Nanoscale Systems

Abstract

Describing by a Hubbard type of model a thin armchair graphene ribbon in the armchair hexagon chain limit, one shows in exact terms, that even if the system does not have flat bands at all, at low concentration a mesoscopic sample can have ferromagnetic ground state, being metallic in the same time. The mechanism is connected to a common effect of correlations and confinement.

Keywords

Ground State Wave Function Double Occupancy Exact Term Ferromagnetic Ground State Test Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. DiCarlo, J.R. Williams, Y. Zhang et al., Phys. Rev. Lett. 100, 156801 (2008) CrossRefADSGoogle Scholar
  2. 2.
    Y.P. Bliokh, V. Freilikher, F. Nori, e-print Cond-mat. arXiv:0910.3106 Google Scholar
  3. 3.
    V. Falkov, Nat. Phys. 3, 151 (2007) CrossRefGoogle Scholar
  4. 4.
    S. Koller, L. Mayrhofer, M. Grifoni, e-print Cond-mat. arXiv:0910.5265 Google Scholar
  5. 5.
    Y.C. Lee, H.H. Lin, J. Phys: Conf. Ser. 150, 042110 (2009) CrossRefADSGoogle Scholar
  6. 6.
    H.H. Lin, T. Hikihara, H.T. Jeng et al., Phys. Rev. B 79, 035405 (2009) CrossRefADSGoogle Scholar
  7. 7.
    R. Arita, Y. Suwa, K. Kuroki, H. Aoki, Phys. Rev. Lett. 88, 127202 (2002) CrossRefADSGoogle Scholar
  8. 8.
    R. Arita, Y. Suwa, K. Kuroki, H. Aoki, Phys. Rev. B 68, 140403(R) (2003) CrossRefADSGoogle Scholar
  9. 9.
    A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. B 77, 085423 (2008) CrossRefADSGoogle Scholar
  10. 10.
    M. Fujita, K. Wakabayashi, K. Nakada et al., J. Phys. Soc. Jpn 65, 1920 (1996) CrossRefADSGoogle Scholar
  11. 11.
    Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Phys. Rev. B 73, 125415 (2006) CrossRefADSGoogle Scholar
  12. 12.
    R. Trencsényi, E. Kovács, Z. Gulácsi, Phil. Mag. 89, 1953 (2009) CrossRefADSGoogle Scholar
  13. 13.
    G. Brocks, J. van den Brink, A.F. Morpurgo, Phys. Rev. Lett. 93, 146405 (2004) CrossRefADSGoogle Scholar
  14. 14.
    A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Nat. Phys. 3, 172 (2007) CrossRefGoogle Scholar
  15. 15.
    B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Nat. Phys. 3, 192 (2007) CrossRefGoogle Scholar
  16. 16.
    A. Mielke, H. Tasaki, Commun. Math. Phys. 158, 341 (1993) MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Y. Suwa, R. Arita, K. Kuroki, H. Aoki, e-print Cond-mat. arXiv:0907.2477 Google Scholar
  18. 18.
    C.D. Batista, J. Bonca, J.E. Gubernatis, Phys. Rev. B 68, 214430 (2003) CrossRefADSGoogle Scholar
  19. 19.
    A. Tanaka, T. Idogaki, J. Phys. A 32, 4883 (1999) MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    A. Tanaka, H. Tasaki, Phys. Rev. Lett. 98, 116403 (2007) ADSGoogle Scholar
  21. 21.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres et al., Rev. Mod. Phys. 81, 109 (2009) CrossRefADSGoogle Scholar
  22. 22.
    Z. Gulácsi, D. Vollhardt, Phys. Rev. Lett. 91, 186401 (2003) CrossRefADSGoogle Scholar
  23. 23.
    Z. Gulácsi, D. Vollhardt, Phys. Rev. B 72, 075130 (2005) CrossRefADSGoogle Scholar
  24. 24.
    Z. Gulácsi, Phys. Rev. B 69, 054204 (2004) CrossRefADSGoogle Scholar
  25. 25.
    Z. Gulácsi, M. Gulácsi, Phys. Rev. B 73, 014524 (2006) CrossRefADSGoogle Scholar
  26. 26.
    Z. Gulácsi, Phys. Rev. B 77, 245113 (2008) CrossRefADSGoogle Scholar
  27. 27.
    L.G. Sarasua, M.A. Continentino, Phys. Rev. B 65, 233107 (2002) CrossRefADSGoogle Scholar
  28. 28.
    L.G. Sarasua, M.A. Continentino, Phys. Rev. B 69, 073103 (2004) CrossRefADSGoogle Scholar
  29. 29.
    L.G. Sarasua, Phys. Rev. B 75, 054504 (2007) CrossRefADSGoogle Scholar
  30. 30.
    R.B. Laughlin, Phil. Mag. 86, 1165 (2006) CrossRefADSGoogle Scholar
  31. 31.
    Z. Gulácsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404 (2007) CrossRefADSGoogle Scholar
  32. 32.
    Z. Gulácsi, A. Kampf, D. Vollhardt, Progr. Theor. Phys. Suppl. 176, 1 (2008) MATHCrossRefGoogle Scholar
  33. 33.
    Z. Gulácsi, Phys. Rev. B 66, 165109 (2002) CrossRefADSGoogle Scholar
  34. 34.
    Z. Gulácsi, Eur. Phys. J. B 30, 295 (2002) CrossRefADSGoogle Scholar
  35. 35.
    I. Orlik, Z. Gulácsi, Phil. Mag. B 81, 1587 (2001) CrossRefGoogle Scholar
  36. 36.
    Z. Gulácsi, I. Orlik, J. Phys. A 34, L359 (2001) CrossRefGoogle Scholar
  37. 37.
    I. Chalupa, Z. Gulácsi, J. Phys: Cond. Mat. 19, 386209 (2007) CrossRefGoogle Scholar
  38. 38.
    P. Gurin, Z. Gulácsi, Phys. Rev. B 64, 045118 (2001) CrossRefADSGoogle Scholar
  39. 39.
    P. Gurin, Z. Gulácsi, Phys. Rev. B 65, 129901(E) (2002) Google Scholar
  40. 40.
    O. Derzhko, J. Richter, A. Honecker et al., Phys. Rev. B 81, 014421 (2010) CrossRefADSGoogle Scholar
  41. 41.
    Y. Lu, J. Guo, e-print Cond-mat. arXiv:0912.2702 Google Scholar
  42. 42.
    L. Sun, Q. Li, H. Ren et al., e-print Cond-mat/0703795 Google Scholar
  43. 43.
    J. Vianna-Gomes, V.M. Pereira, N.M.R. Peres, Phys. Rev. B 80, 245436 (2009) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.University of DebrecenDebrecenHungary

Personalised recommendations