The European Physical Journal B

, Volume 75, Issue 2, pp 197–203 | Cite as

Nonlinear optical absorption in graded quantum wells modulated by electric field and intense laser field

Solid State and Materials

Abstract

The laser field dependence of the linear and nonlinear intersubband optical absorption in a graded quantum well (GQW) under an applied electric field is investigated in the effective mass approximation. In our calculations, the position and the magnitude of the linear and total absorption coefficients depend on the laser parameter and electric field strength. The resonant peak of total absorption coefficient can be bleached at sufficiently high incident optical intensities. Such a dependence of the exciting optical intensity on the external field strengths in GQWs can be very useful for several potential device applications.

Keywords

Quantum Well Laser Parameter Intense Laser Resonant Peak Optical Intensity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.D. Coon, R.P.G. Karunasiri, Appl. Phys. Lett. 45, 649 (1984)CrossRefADSGoogle Scholar
  2. 2.
    B.F. Levine, C.G. Bethea, K.K. Choi, J. Walker, R.J. Malik, Appl. Phys. Lett. 53, 231 (1988)CrossRefADSGoogle Scholar
  3. 3.
    Y. Huang, C. Lien, T.-F. Lei, J. Appl. Phys. 74, 2598 (1993)CrossRefADSGoogle Scholar
  4. 4.
    D. Ahn, S.L. Chuang, J. Appl. Phys. 62, 3052 (1987)CrossRefADSGoogle Scholar
  5. 5.
    L.N. Pandey, T.F. George, Appl. Phys. Lett. 61, 1081 (1992)CrossRefADSGoogle Scholar
  6. 6.
    P. Sitarek, K. Ryczko, G. Sek, J. Misiewicz, M. Fischer, M. Reinhardt, A. Forchel, Solid-State Electron. 47, 489 (2003)CrossRefADSGoogle Scholar
  7. 7.
    N.G. Semaltianos, J. Phys. Chem. Sol. 63, 273 (2002)CrossRefADSGoogle Scholar
  8. 8.
    V. Albe, L.J. Lewis, Physica B 301, 233 (2001)CrossRefADSGoogle Scholar
  9. 9.
    R. Dingle, W. Wiegman, C.H. Henry, Phys. Rev. Lett. 33, 827 (1974)CrossRefADSGoogle Scholar
  10. 10.
    A. Harwitt, J.S. Harris Jr., Appl. Phys. Lett. 50, 685 (1987)CrossRefADSGoogle Scholar
  11. 11.
    D.D. Yang, F.H. Julien, P. Boucaud, J.M. Lourtioz, R. Planel, Phot. Tech. Lett. IEEE 2, 181 (1990)CrossRefADSGoogle Scholar
  12. 12.
    A. Fenigstein, A. Fraenkel, E. Finkman, G. Bahir, S.E. Schacham, Appl. Phys. Lett. 66, 2513 (1995)CrossRefADSGoogle Scholar
  13. 13.
    L.C. West, S.J. Eglash, Appl. Phys. Lett. 46, 1156 (1985)CrossRefADSGoogle Scholar
  14. 14.
    R.J. Turton, M. Jaros, Appl. Phys. Lett. 47, 1986 (1989)CrossRefADSGoogle Scholar
  15. 15.
    F. Capasso, K. Mohammed, A.Y. Cho, Appl. Phys. Lett. 48, 478 (1986)CrossRefADSGoogle Scholar
  16. 16.
    K.W. Gossen, S.A. Lyon, Appl. Phys. Lett. 47, 289 (1985)CrossRefGoogle Scholar
  17. 17.
    K.K. Choi, B.F. Levine, C.G. Bethea, J. Walker, R.J. Malik, Appl. Phys. Lett. 50, 1814 (1987)CrossRefADSGoogle Scholar
  18. 18.
    D. Ahn, S.L. Chuang, Phys. Rev. B 35, 4149 (1987)CrossRefADSGoogle Scholar
  19. 19.
    D. Ahn, S.L. Chuang, Phys. Rev. B 34, 9034 (1986)CrossRefADSGoogle Scholar
  20. 20.
    R.P.G. Karunasiri, Y.J. Mii, K.L. Wang, IEEE Electron Dev. Lett. 11, 227 (1990)CrossRefADSGoogle Scholar
  21. 21.
    S. Noda, T. Uemura, T. Yamashita, A. Sasaki, J. Appl. Phys. 68, 6529 (1990)CrossRefADSGoogle Scholar
  22. 22.
    R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707 (1971)Google Scholar
  23. 23.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)CrossRefADSGoogle Scholar
  24. 24.
    E. Ozturk, I. Sokmen, Superlattices Microstruct. 41, 36 (2007)CrossRefADSGoogle Scholar
  25. 25.
    I. Karabulut, U. Atav, H. Safak, M. Tomak, Eur. Phys. J. B 55, 283 (2007)CrossRefADSGoogle Scholar
  26. 26.
    B. Chen, K-X. Guo, R-Z. Wang, Z-H. Zhang, Z-L. Liu, Solid State Commun. 149, 310 (2009)CrossRefADSGoogle Scholar
  27. 27.
    E. Ozturk, H. Sari, I. Sokmen, Eur. Phys. J. Appl. Phys. 35, 1 (2006)CrossRefADSGoogle Scholar
  28. 28.
    E. Ozturk, H. Sari, I. Sokmen, Appl. Phys. A 80, 541 (2005)CrossRefADSGoogle Scholar
  29. 29.
    E. Ozturk, H. Sari, I. Sokmen, J. Phys. D: Appl. Phys. 38, 935 (2005)CrossRefADSGoogle Scholar
  30. 30.
    E. Kasapoglu, I. Sokmen, Physica B 403, 3746 (2008)CrossRefADSGoogle Scholar
  31. 31.
    F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. Da Silva Jr., J. Appl. Phys. 105, 123111 (2009)CrossRefADSGoogle Scholar
  32. 32.
    D.A.B. Miller, D.S. Chemla, S. Schmitt-Rink, Phys. Rev. B 33, 6976 (1986)CrossRefADSGoogle Scholar
  33. 33.
    M.N. Islam, R.L. Hillman, D.A.B. Miller, D.S. Chemla, A.C. Gossard, J.H. English, Appl. Phys. Lett. 50, 1098 (1987)CrossRefADSGoogle Scholar
  34. 34.
    P.F. Yuh, K.L. Wang, IEEE J. Quantum Electron. QE-25, 1671 (1989)CrossRefADSGoogle Scholar
  35. 35.
    E. Ozturk, H. Sari, I. Sokmen, Solid State Commun. 132, 497 (2004)CrossRefADSGoogle Scholar
  36. 36.
    H. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956), p. 866Google Scholar
  37. 37.
    H.S. Bradi, G. Jalbert, Solid State Commun. 113, 207 (2000)CrossRefGoogle Scholar
  38. 38.
    D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. QE-23, 2196 (1987)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of PhysicsCumhuriyet UniversitySivasTurkey

Personalised recommendations