The European Physical Journal B

, Volume 74, Issue 4, pp 447–450 | Cite as

First-principle study of the electronic structures and ferroelectric properties in BaZnF4

  • D. Cao
  • M.-Q. Cai
  • C.-H. Tang
  • P. Yu
  • W.-Y. Hu
  • Y. Du
  • B.-Y. Huang
  • H.-Q. Deng
Solid State and Materials

Abstract

The electronic structures and ferroelectric properties of barium fluoride BaZnF4were investigated by employing ab initio calculations based on the density-functional theory within generalized gradient approximation. We discussed the possible origin of ferroelectricity of BaZnF4 by the analysis of Born effective charges, orbital-resolved density of states, and distribution of charge density. The results show that the barium and fluorine atoms are very important polarization unity. The calculated spontaneous polarization of 14.2 μC/cm2 by using Berry-phase approach is reasonable agreement with previous experimental data. Barium fluorides are promising candidates for use in nonvolatile memories devices.

Keywords

Ferroelectric Property Spontaneous Polarization Previous Experimental Data Nonvolatile Memory Device Optimize Lattice Constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.Q. Cai, Y. Zheng, G.W. Yang, B. Wang, Appl. Phys. Lett. 95, 232901 (2009)CrossRefADSGoogle Scholar
  2. 2.
    D. Cao, M.Q. Cai, Y. Zheng, W.Y. Hu, Phys. Chem. Chem. Phys. 11, 10934 (2009)CrossRefGoogle Scholar
  3. 3.
    M.Q. Cai, G.W. Yang, X. Tan, Y.L. Cao, L.L. Wang, W.Y. Hu, Y.G. Wang, Appl. Phys. Lett. 91, 101901 (2007)CrossRefADSGoogle Scholar
  4. 4.
    H.B. Shu, G.C. Zhou, X.L. Zhong, L.Z. Sun, J.B. Wang, X.S. Chen, Y.C. Zhou, J. Phys.: Condens. Matter 19, 276213 (2007)CrossRefADSGoogle Scholar
  5. 5.
    M.Q. Cai, Y.J. Zhang, Z. Yin, M.S. Zhang, Phys. Rev. B 72, 075406 (2005)CrossRefADSGoogle Scholar
  6. 6.
    M.Q. Cai, X. Tan, G.W. Yang, L.Q. Wen, L.L. Wang, W.Y. Hu, Y.G. Wang, J. Phys. Chem. C 112, 16638 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Eibschütz, H.J. Guggenheim, S.H. Wemple, I. Camlibel, M. DiDomenico, Phys. Lett. A 29, 409 (1969)CrossRefADSGoogle Scholar
  8. 8.
    M. Eibschütz, H.J. Guggenheim, Solid State Commun. 6, 737 (1968)CrossRefADSGoogle Scholar
  9. 9.
    L.M. Holmes, M. Eibschütz, H.J. Guggenheim, Solid State Commun. 7, 973 (1969)CrossRefADSGoogle Scholar
  10. 10.
    C. Ederer, N.A. Spaldin, Phys. Rev. B 74, 020401 (2006)CrossRefADSGoogle Scholar
  11. 11.
    S.L. Swartz, V.E. Wood, Condens. Matter News 1, 4 (1992)Google Scholar
  12. 12.
    H.N. Bordallo, A. Bulou, R. Almairac, J. Nouet, J. Phys. Condens. Matter 6, 10365 (1994)CrossRefADSGoogle Scholar
  13. 13.
    R. Almairac, H.N. Bordallo, A. Bulou, J. Nouet, R. Currat, Phys. Rev. B 55, 8249 (2000)CrossRefADSGoogle Scholar
  14. 14.
    E.G. Víllora, K. Shimamura, F.L. Jing, A. Medvedev, S. Takekawa, K. Kitamura, Appl. Phys. Lett. 90, 192909 (2007)CrossRefADSGoogle Scholar
  15. 15.
    J. Flocken, Z. Mo, W.N. Mei, Phys. Rev. B 49, 5811 (1993)CrossRefADSGoogle Scholar
  16. 16.
    J.R. Veira, D.N. Argyriou, K. Kiefer, A.U.B. Wolter, D. Albe, M. Meissner, R. Almairac, M. Reehuis, H.N. Bordallo, Phys. Rev. B 78, 054104 (2008)CrossRefADSGoogle Scholar
  17. 17.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefADSGoogle Scholar
  18. 18.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)CrossRefADSGoogle Scholar
  19. 19.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)CrossRefADSGoogle Scholar
  20. 20.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefADSGoogle Scholar
  21. 21.
    R.D. King-Smith, D. Vanderbilt, Phys. Rev. B 47, 1651 (1993)CrossRefADSGoogle Scholar
  22. 22.
    D. Vanderbilt, R.D. King-Smith, Phys. Rev. B 48, 4442 (1993)CrossRefADSGoogle Scholar
  23. 23.
    R. Resta, Rev. Mod. Phys. 66, 899 (1994)CrossRefADSGoogle Scholar
  24. 24.
    M.Q. Cai, Y. Zhen, M.S. Zhang, Y.Z. Li, Chem. Phys. Lett. 399, 89 (2004).CrossRefADSGoogle Scholar
  25. 25.
    J. Lapasset, H. Bordallo, R. Almairac, J. Nouet, Z. Kristallogr 211, 934 (1996)CrossRefGoogle Scholar
  26. 26.
    Y. Kuroiwa, S. Aoyagi, A. Sawada, J. Harada, E. Nishibori, M. Takata, M. Sakata, Phys. Rev. Lett. 87, 21760 (2001)CrossRefGoogle Scholar
  27. 27.
    H.B. Shu, L.Z. Sun, X.L. Zhong, J.B. Wang, Y.C. Zhou, J. Phys. Chem. S 70, 707 (2009)CrossRefADSGoogle Scholar
  28. 28.
    X. Gonze, P. Ghosez, R.W. Godby, Phys. Rev. Lett. 78, 294 (1997)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • D. Cao
    • 1
  • M.-Q. Cai
    • 1
    • 2
    • 3
  • C.-H. Tang
    • 4
  • P. Yu
    • 1
  • W.-Y. Hu
    • 1
  • Y. Du
    • 2
  • B.-Y. Huang
    • 2
  • H.-Q. Deng
    • 1
  1. 1.School of Physics and Microelectronics Science, Hunan UniversityChangshaHunan, P.R. China
  2. 2.State Key Laboratory of Powder Metallurgy, Central South UniversityChangsha, HunanP.R. China
  3. 3.State Key Laboratory of Optoelectronic Materials and Technologies, Zhongshan UniversityGuangzhouGuangdong, P.R. China
  4. 4.Nanjing Inst. Technol., Dept. Basic CourseNanjingP.R. China

Personalised recommendations