The European Physical Journal B

, Volume 74, Issue 2, pp 271–278 | Cite as

Evolution of the Internet AS-level ecosystem

  • S. Shakkottai
  • M. Fomenkov
  • R. Koga
  • D. Krioukov
  • K. C. Claffy
Interdisciplinary Physics

Abstract

We present an analytically tractable model of Internet evolution at the level of autonomous systems (ASs). We call our model the multiclass preferential attachment (MPA) model. As its name suggests, it is based on preferential attachment. All of its parameters are measurable from available Internet topology data. Given the estimated values of these parameters, our analytic results predict a definitive set of statistics characterizing the AS topology structure. These statistics are not part of the model formulation. The MPA model thus closes the “measure-model-validate-predict” loop, and provides further evidence that preferential attachment is a driving force behind Internet evolution.

Keywords

Autonomous System Degree Distribution Node Degree Preferential Attachment Internet Service Provider 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, Cambridge, 2004) Google Scholar
  2. M. Faloutsos, P. Faloutsos, C. Faloutsos, Comput. Commun. Rev. 29, 251 (1999) Google Scholar
  3. A. Dhamdhere, C. Dovrolis, Ten years in the evolution of the Internet ecosystem, in IMC '08: Proceedings of the 8th ACM SIGCOMM conference on Internet measurement (ACM, New York, NY, USA, 2008), pp. 183–196, ISBN 978-1-60558-334-1 Google Scholar
  4. R. Albert, A.L. Barabási, Phys. Rev. Lett. 85, 5234 (2000) Google Scholar
  5. S.H. Yook, H. Jeong, A.L. Barabási, Proc. Natl. Acad. Sci. USA 99, 13382 (2002) Google Scholar
  6. K.I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 88, 108701 (2002) Google Scholar
  7. H. Chang, S. Jamin, W. Willinger, Internet connectivity at the AS-level: An optimization-driven modeling approach, in MoMeTools '03: Proceedings of the ACM SIGCOMM workshop on Models, methods and tools for reproducible network research (ACM, New York, NY, USA, 2003), pp. 33–46, ISBN 1-58113-748-8 Google Scholar
  8. S. Zhou, R.J. Mondragón, Phys. Rev. E 70, 066108 (2004) Google Scholar
  9. S. Zhou, Phys. Rev. E 74, 016124 (2006) Google Scholar
  10. M.Á. Serrano, M. Boguñá, A. Díaz-Guilera, Phys. Rev. Lett. 94, 038701 (2005) Google Scholar
  11. M.Á. Serrano, M. Boguñá, A. Díaz-Guilera, Eur. Phys. J. B 50, 249 (2006) Google Scholar
  12. H. Chang, S. Jamin, W. Willinger, To Peer or Not to Peer: Modeling the Evolution of the Internet's AS-Level Topology, in INFOCOM 2006, 25th IEEE International Conference on Computer Communications, 23–29 April 2006, Barcelona, Catalunya, Spain (IEEE, 2006) Google Scholar
  13. X. Wang, D. Loguinov, Wealth-Based Evolution Model for the Internet AS-Level Topology, in INFOCOM 2006, 25th IEEE International Conference on Computer Communications, 23–29 April 2006, Barcelona, Catalunya, Spain (IEEE, 2006) Google Scholar
  14. R. D'Souza, C. Borgs, J. Chayes, N. Berger, R. Kleinberg, Proc. Natl. Acad. Sci. USA 104, 6112 (2007) Google Scholar
  15. J. Corbo, S. Jain, M. Mitzenmacher, D. Parkes, An Economically-Principled Generative Model of AS Graph Connectivity, in NetEcon+IBC 2007: Proceedings of the ACM Joint Workshop on The Economics of Networked Systems and Incentive-Based Computing (ACM, 2007) Google Scholar
  16. S. Bar, M. Gonen, A. Wool, Comput. Netw. 51, 4174 (2007) Google Scholar
  17. P. Holme, J. Karlin, S. Forrest, Comput. Commun. Rev. 38 (2008) Google Scholar
  18. R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001) Google Scholar
  19. E. Ravasz, A.L. Barabási, Phys. Rev. E 67, 026112 (2003) Google Scholar
  20. J. Park, M.E.J. Newman, Phys. Rev. E 68, 026112 (2003) Google Scholar
  21. G. Bianconi, G. Caldarelli, A. Capocci, Phys. Rev. E 71, 066116 (2005) Google Scholar
  22. D. Krioukov, F. Chung, kc claffy, M. Fomenkov, A. Vespignani, W. Willinger, Comput. Commun. Rev. 37 (2007) Google Scholar
  23. P. Mahadevan, D. Krioukov, K. Fall, A. Vahdat, Comput. Commun. Rev. 36, 135 (2006) Google Scholar
  24. X. Dimitropoulos, D. Krioukov, G. Riley, A. Vahdat, ACM T Model Comput. S 19, 17 (2009) Google Scholar
  25. A.L. Barabási, R. Albert, Science 286, 509 (1999) Google Scholar
  26. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000) Google Scholar
  27. P.L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000) Google Scholar
  28. X. Dimitropoulos, D. Krioukov, G. Riley, K.C. Claffy, Revealing the Autonomous System Taxonomy: The Machine Learning Approach, in PAM 2006: Proceedings of the 7th International Conference on Passive and Active Network Measurement, Adelaide, Australia, March 30–31 (2006) Google Scholar
  29. H. Chang, R. Govindan, S. Jamin, S.J. Shenker, W. Willinger, Comput. Netw. 44, 737 (2004) Google Scholar
  30. P. Mahadevan, D. Krioukov, M. Fomenkov, B. Huffaker, X. Dimitropoulos, K.C. Claffy, A. Vahdat, Comput. Commun. Rev. 36, 17 (2006) Google Scholar
  31. University of Oregon Route Views Project, http://www.routeviews.org/ Google Scholar
  32. X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun, K.C. Claffy, G. Riley, Comput. Commun. Rev. 37 (2007) Google Scholar
  33. M.Á. Serrano, D. Krioukov, M. Boguñá, Phys. Rev. Lett. 100, 078701 (2008) Google Scholar
  34. S. Zhou, G. Zhang, G. Zhang, IET Commun. 1, 209 (2007) Google Scholar
  35. CAIDA, AS Relationships Data, Research Project, http://www.caida.org/data/active/as-relationships/ Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • S. Shakkottai
    • 1
  • M. Fomenkov
    • 2
  • R. Koga
    • 2
  • D. Krioukov
    • 2
  • K. C. Claffy
    • 2
  1. 1.Department of ECETexas A&M UniversityCollege StationUSA
  2. 2.Cooperative Association for Internet Data Analysis, University of CaliforniaLa JollaUSA

Personalised recommendations