The European Physical Journal B

, Volume 74, Issue 1, pp 35–45 | Cite as

An equation of state of a carbon-fibre epoxy composite under shock loading

  • A. A. Lukyanov
Solid State and Materials


An anisotropic equation of state (EOS) is proposed for the accurate extrapolation of high-pressure shock Hugoniot (anisotropic and isotropic) states to other thermodynamic (anisotropic and isotropic) states for a shocked carbon-fibre epoxy composite (CFC) of any symmetry. The proposed EOS, using a generalised decomposition of a stress tensor [A.A. Lukyanov, Int. J. Plasticity 24, 140 (2008)], represents a mathematical and physical generalisation of the Mie-Grüneisen EOS for isotropic material and reduces to this equation in the limit of isotropy. Although a linear relation between the generalised anisotropic bulk shock velocity Us A and particle velocity up was adequate in the through-thickness orientation, damage softening process produces discontinuities both in value and slope in the Us A-up relation. Therefore, the two-wave structure (non-linear anisotropic and isotropic elastic waves) that accompanies damage softening process was proposed for describing CFC behaviour under shock loading. The linear relationship Us A-up over the range of measurements corresponding to non-linear anisotropic elastic wave shows a value of c0 A (the intercept of the Us A-up curve) that is in the range between first and second generalised anisotropic bulk speed of sound [A.A. Lukyanov, Eur. Phys. J. B 64, 159 (2008)]. An analytical calculation showed that Hugoniot Stress Levels (HSLs) in different directions for a CFC composite subject to the two-wave structure (non-linear anisotropic elastic and isotropic elastic waves) agree with experimental measurements at low and at high shock intensities. The results are presented, discussed and future studies are outlined.


Shock Wave Epoxy Composite Shock Velocity Carbon Fibre Composite Anisotropic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.M. Barker, R.E. Hollenbach, J. Appl. Phys. 43, 4669 (1972)CrossRefADSGoogle Scholar
  2. 2.
    G.I. Kanel, J. Mech. Phys. Solids 43, 1869 (1998)CrossRefADSGoogle Scholar
  3. 3.
    G.I. Kanel, K. Baumung, H. Bluhm, V.E. Fortov, Nucl. Instr. Meth. Phys. Res. A 415, 509 (1998)CrossRefGoogle Scholar
  4. 4.
    N.K. Bourne, G.S. Stevens, Rev. Sci. Instrum. 72, 2214 (2001)CrossRefADSGoogle Scholar
  5. 5.
    N.K. Bourne, Meas. Sci. Technol. 14, 273 (2003)CrossRefADSGoogle Scholar
  6. 6.
    R. Jeanloz, P.M. Celliers, G.W. Collins, J.H. Eggert, K.K.M. Lee, R.S. McWilliams, S. Brygoo, P. Loubeyre, PNAS 104, 9172 (2007)CrossRefADSGoogle Scholar
  7. 7.
    L. Davison, R.A. Graham, Shock Compres. Solids Phys. Rep. 55, 255 (1979)CrossRefADSGoogle Scholar
  8. 8.
    A.V. Bushman, G.I. Kanel, A.L. Ni, V.E. Fortov, Intense dynamic Loading of Condensed Matter (Taylor and Francis, Washington, D.C., 1993)Google Scholar
  9. 9.
    M.A. Meyers, Dynamic Behavior of Materials (Wiley, Inc., New York, 1994)CrossRefMATHGoogle Scholar
  10. 10.
    D.J. Steinberg, Report No. UCRL-MA-106439, Lawrence Livermore National Laboratory, Livermore, CA (1991)Google Scholar
  11. 11.
    D. Chen, S.T.S. Al-Hassani, Z. Yin, Y. Yu, Int. J. Solids Struct. 38, 8787 (2001)CrossRefMATHGoogle Scholar
  12. 12.
    A.B. Kiselev, A.A. Lukyanov, Int. J. Forming Processes 5, 359 (2002)CrossRefGoogle Scholar
  13. 13.
    A. Jerusalem, R. Radovitzky, Modelling Simul. Mater. Sci. Eng. 17, 025001 (2009)CrossRefADSGoogle Scholar
  14. 14.
    D.P. Dandekar, C.A. Hall, L.C. Chhabildas, W.D. Reinhart, Compos. Struct. 61, 51 (2003)CrossRefGoogle Scholar
  15. 15.
    D.E. Munson, R.P. May, J. Appl. Phys. 43, 962 (1972)CrossRefADSGoogle Scholar
  16. 16.
    J.C.F. Millett, N.K. Bourne, N.R. Barnes, J. Appl. Phys. 92, 6590 (2002)CrossRefADSGoogle Scholar
  17. 17.
    A.Z. Zhuk, G.I. Kanel, A.A. Lash, J. Phys. IV 4, 403 (1994)CrossRefGoogle Scholar
  18. 18.
    W. Riedel, H. Nahme, K. Thoma, in Shock compression of condensed matter 2003, edited by M.D. Furnish, Y.M. Gupta, J.W. Forbes (Melville, N.Y.: AIP Press, 2004), p. 701Google Scholar
  19. 19.
    E. Zaretsky, G. deBotton, M. Perl, Int. J. Solids Struct. 41, 569 (2004)CrossRefGoogle Scholar
  20. 20.
    J.K. Chen, A. Allahdadi, T. Carney, Comp. Sci. Techn. 57, 1268 (1997)CrossRefGoogle Scholar
  21. 21.
    C.J. Hayhurst, S.J. Hiermaier, R.A. Clegg, W. Riedel, M. Lambert, Int. J. Impact Engineering 23, 365 (1999)CrossRefGoogle Scholar
  22. 22.
    C.E. Anderson, Jr. P.E. O’Donoghue, D. Skerhut, J. Comp. Materials 24, 1159 (1990)CrossRefGoogle Scholar
  23. 23.
    C.E. Anderson, P.A. Cox, G.R. Johnson, P.J. Maudlin, Comput. Mech. 15, 201 (1994)CrossRefMATHGoogle Scholar
  24. 24.
    S.A. Bordzilovsky, S.M. Karakhanov, L.A. Merzhievsky, in Shock compression of condensed matter 1997, edited by S.C. Schmidt, D.P. Dandekar, J.W. Forbes (Melville, N.Y.: AIP Press, 1998), p. 545Google Scholar
  25. 25.
    P-L Hereil, O. Allix, M. Gratton, J. Phys. IV 7, 529 (1997)Google Scholar
  26. 26.
    J.C.F. Millett, N.K. Bourne, Y.J.E. Meziere, R. Vignjevic, A.A. Lukyanov, Comp. Sci. Techn. 67, 3253 (2007)CrossRefGoogle Scholar
  27. 27.
    A.A. Lukyanov, Int. J. Plasticity 24, 140 (2008)CrossRefMATHGoogle Scholar
  28. 28.
    A.A. Lukyanov, Eur. Phys. J. B 64, 159 (2008)CrossRefADSGoogle Scholar
  29. 29.
    A.A. Lukyanov, J. Appl. Mech. 76, 061012 (2009)CrossRefGoogle Scholar
  30. 30.
    A.A. Lukyanov, ASME Proceeding IPC2006, ISBN 0-7918-3788-2 (2006)Google Scholar
  31. 31.
    A.A. Lukyanov, J. Pressure Vessel Technology 130, 021701 (2008)CrossRefGoogle Scholar
  32. 32.
    A.A. Lukyanov, V.B. Penjkov, J. Appl. Math. Mech. 73, 457 (2009)CrossRefGoogle Scholar
  33. 33.
    H.A. Bethe, Office of Scientific Res. Develop. Rept. No. 545, Serial No. 237 (1942)Google Scholar
  34. 34.
    J.P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge: Univ. Press, 2000)Google Scholar
  35. 35.
    W.J. Carter, S.P. Marsh, Report No. LA-12006-MS, Los Alamos National Laboratory, LA, 1995Google Scholar
  36. 36.
    A.A. Lukyanov, Mech. Advan. Mater. Struct., Special Issue: ICCS15. Accepted (2009)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Abingdon Technology Centre, SchlumbergerAbingdonUK

Personalised recommendations